Math, asked by illenaparker1530, 7 months ago

Find the mean of first n even positive integers.

Answers

Answered by Anonymous
15

ANSWER

\large\underline\bold{GIVEN,}

\text{first n even positive integersare,}

\sf\dashrightarrow 2+4+6+.......n_{th} term.

\sf\dashrightarrow a= 2

\sf\dashrightarrow d= t_2-t_1 \\ \implies d= 4-2\\ \implies d=2

\large\underline\bold{TO\:FIND,}

\sf\dashrightarrow\text{ mean of first n even positive integers.}

FORMULA IN USE,

\large{\boxed{\bf{ \star\:\:  S_n= \dfrac{n}{2} \bigg( 2a+(n-1)d \bigg)\:\: \star}}}

\large\underline\bold{SOLUTION,}

\sf\dashrightarrow\text{ putting the values in the formula and solving it,}

\sf\dashrightarrow S_n= \dfrac{n}{2} \times \bigg( 2(2)+(n-1)(2) \bigg)

\sf\implies  S_n= \dfrac{n}{2} \times \bigg(4+(2n-2) \bigg)

\sf\implies  S_n= \dfrac{n}{2} \times \bigg(2+2n\bigg)

\sf\implies  S_n= \dfrac{n}{2} \times  2\big(1+n\big)

\sf\implies  S_n= \dfrac{n}{\cancel{2}} \times  \cancel{2}\:\:\big(1+n\big)

\sf\implies S_n= n(n+1)

\sf\therefore\text{ the n th term is, n(n+1).}

NOW,

\large\therefore  mean= \dfrac{S_n}{n}

\sf\implies \dfrac{ n(n+1)}{n}

\sf\implies \dfrac{\cancel{n}(n+1)}{\cancel{n}}

\sf\implies n+1

\large{\boxed{\bf{ \star\:\: mean= n+1\:\: \star}}}

\large\underline\bold{MEAN \:OF\: FIRST \:n\: EVEN\: POSITIVE\: INTEGERS\:IS\:n(n+1)}

___________

Answered by thakurprakhyatsinght
0

Answer:

Answer N+1 hai zyada explanation ki jaroorat nhi pura panna bhar de rahe bande log

Similar questions