Math, asked by nirmalagoud, 1 month ago

Find the mean of the data with observations 2/5,5/3,1/3,5/6,1/6​

Answers

Answered by kuswahaaaditya33
6

Answer:

Mean of the data is 18.33.

Step-by-step explanation:

We are given the following data below ;

2/3, 5/3, 1/3, 5/6, 1/6

Now, as we know that formula for finding mean for any discrete data is given by;

                              Mean, \bar XXˉ  =  \frac{\sum X}{n}n∑X

where, \sum X∑X  = Sum of all the observations in data

                n  = number of observations

Here, the obs. are :  \frac{2}{3} ,\frac{5}{3} ,\frac{1}{3} ,\frac{5}{6} ,\frac{1}{6}32,35,31,65,61

Firstly, we will try to make the denominator same for all the given fraction values, that is;

                       \frac{2}{3} = \frac{2 \times 2}{3 \times 2} =\frac{4}{6}32=3×22×2=64

                       \frac{5}{3} = \frac{5 \times 2}{3 \times 2} =\frac{10}{6}35=3×25×2=610    

                       \frac{1}{3} = \frac{1 \times 2}{3 \times 2} =\frac{2}{6}31=3×21×2=62

                       \frac{5}{6} = \frac{5 \times 1}{6 \times 1} =\frac{5}{6}65=6×15×1=65

                       \frac{1}{6} = \frac{1 \times 1}{6 \times 1} =\frac{1}{6}61=6×11×1=61

Now, Mean of the data, \bar XXˉ  =  \frac{\frac{4}{6}+\frac{10}{6}+\frac{2}{6}+\frac{5}{6}+\frac{1}{6} }{5}564+610+62+65+61

                                             =  \frac{22}{6}\times 5622×5  =  18.33

Hence, the mean of the given data is 18.33.

Answered by madhumitha4687
4

Mean of the data is 18.33. Hence, the mean of the given data is 18.33.

Similar questions