Math, asked by sachidanand928, 16 days ago

find the mean of the following frequency distribution, using the assume mean method,: Class 100-120 120-140 140-160 160-180 180-200. frequency. 10 20 30 15 5

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Frequency distribution table for calculations of mean using Step Deviation Method is as below :

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c|c|c|c}\sf Class\: interval&\sf Frequency\: (f_i)&\sf \: midvalue \: (x_i)&\sf \: u_i&\sf \: f_iu_i\\\frac{\qquad  \qquad}{}&\frac{\qquad  \qquad}{}\\\sf 100 - 120&\sf 10&\sf110&\sf - 2&\sf - 20\\\\\sf 120 - 140 &\sf 20&\sf130&\sf - 1&\sf - 20\\\\\sf 140-160 &\sf 30 &\sf150&\sf0&\sf0\\\\\sf 160 - 180&\sf 15&\sf170&\sf1&\sf15\\\\\sf 180-200&\sf 5&\sf190&\sf2&\sf10\\\\\ \end{array}}\end{gathered}\end{gathered}\end{gathered}

So, from above calculations, we have

\rm \: A = 150 \\

\rm \: h = 20 \\

\rm \:  \sum \: f_i = 80 \\

\rm \:  \sum \: f_iu_i =  - 15 \\

We know, Mean using Step Deviation Method is given by

\rm \: Mean = A + h \times \dfrac{ \sum \: f_iu_1}{ \sum \: f_i}  \\

\rm \: Mean = 150 + 20 \times \dfrac{( - 15)}{80}   \\

\rm \: Mean = 150  -  \dfrac{15}{4}   \\

\rm \: Mean = 150  -  3.75   \\

\rm\implies \:\boxed{ \rm{ \:Mean \:  =  \: 146.25 \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

1. Mean using Direct Method

\rm \: Mean = \dfrac{ \sum \: f_ix_1}{ \sum \: f_i}  \\

2. Mean using Short Cut Method

\rm \: Mean = A +  \dfrac{ \sum \: f_id_1}{ \sum \: f_i}  \\

Similar questions