Math, asked by mamtha29, 1 year ago

find the measure of each angle of a quadrilateral whose ratio of the angles is 1:2:3:4​

Answers

Answered by sahasraramadugu2005
1

let the ratio be x

sum of the angles in a quadrilateral = 360 degree

1x + 2x + 3x + 4x = 360

10x=360

x=360/10

x=36

1x=1×36

=36 degree

2x=2×36

=72 degree

3x=3×36

=108 degree

4x=4×36

=144 degree

therefore, the angles are 36 degree,72 degree, 108 degree and 144 degree

Answered by Sauron
7

\mathfrak{\large{\underline{\underline{Answer :-}}}}

The angles of the Quadliateral are 36°, 72°, 108° and 144°

\mathfrak{\large{\underline{\underline{Explanation :-}}}}

\rule{300}{1}

Given :

The Ratio of angles = 1 : 2 : 3 : 4

To find :

The Measures of the angles in the quadliateral.

Solution :

Consider the angles as x, 2x, 3x, and 4x

As we know that the angles in the quadliateral sum up and make 360°.

Equation :

\boxed{\sf{x + 2x + 3x + 4x = 360 ^{\circ}}}

\sf{\implies} \: x + 2x + 3x + 4x = 360

\sf{\implies} \:10x = 360

\sf{\implies} \:x = \dfrac{360}{10}

\sf{\implies} \:x = 36

\rule{300}{1}

Value of 2x

\sf{\implies} \:2 \times 36

\sf{\implies} \:72^{\circ}

\rule{300}{1}

Value of 3x

\sf{\implies} \:3 \times 36

\sf{\implies} \:108^\circ

\rule{300}{1}

Value 4x

\sf{\implies} \:4 \times 36

\sf{\implies} \:144^\circ

\therefore The angles of the Quadliateral are 36°, 72°, 108° and 144°

\rule{300}{1}

\mathfrak{\large{\underline{\underline{Verification :-}}}}

\sf{\implies} \:72^\circ+108^\circ+144^\circ+36^\circ

\sf{\implies} \:360^\circ

\therefore The angles of the Quadliateral are 36°, 72°, 108° and 144°

Similar questions