Math, asked by poorvakamathankar3, 8 months ago

find the measure of interior angle of regular polygon having 20 sides.​

Answers

Answered by ItzRiya07
13

Step-by-step explanation:

Each interior angle of a regularpolygon of 20 sides = 180 - 18 = 162 deg. Total sum of the 20 interior angles of the regular polygon = 162*20 = 3240 degree

hope it's help u plzz follow me to get follow back.....

Answered by emma3006
15

Step-by-step explanation:

Sum \; of \; exterior \; angles \; of \; any \; polygon \; is \; 360°.

So, \; the \; measure \; of \; exterior \; angle \; of \; a \; regular \; polygon \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; = \frac{360°}{no. \; of \; sides \; of \; the \; polygon} \\\\

Here, \; we \; have \; a \; polygon \; having \; 20 \; sides.

So, \; the \; measure \; of \; each \; ext. \; angle \; of \; the \; polygon \; = \Large\frac{360°}{20} \normalsize = 18°

 Now, \; the \; interior \; angle \; of \; a \; polygon \; = 180°- ext. \; angle

 So, \; the \; ext. \; angle \; of \; the \; polygon \; = 180°-18° = 162° \\ \\

So, \; measure \; of \; each \; int. \; angle \; of \; the \; regular \; polygon \; with \; 20  sides \; is \; 162°. \\ \\

Sum \; of \; int. \; angles \; of \; a \; regular \; polygon \; = int. \; angle \times no. \; of \; sides \;

So, \; the \; sum \; of \; int. \; angles \; of \; the \; given \; polygon \; = 162° \times 20 \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad  = 3240°

Similar questions