Math, asked by gpmmishra1983, 4 days ago

find the measure of X in each of the following ​

Answers

Answered by archnachoursiya1440
0

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Solution−

Given that,

An AP consists of 52 terms of which 3rd term is 13 and the last term is 106.

Let assume that, first term of an AP is a and common difference of an AP is d.

So, we have

\begin{gathered}\rm \: n \: = \: 52 \\ \end{gathered}

n=52

\begin{gathered}\rm \: a_3 \: = 13 \\ \end{gathered}

a

3

=13

\begin{gathered}\rm \: a_{52} \: = 106 \\ \end{gathered}

a

52

=106

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\begin{gathered}\:\:{\underline{{\boxed{\bf{{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}\end{gathered}

a

n

=a+(n−1)d

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Tʜᴜs,

\begin{gathered}\rm \: a_3 \: = 13 \\ \end{gathered}

a

3

=13

\begin{gathered}\rm \: a + (3 - 1)d = 13 \\ \end{gathered}

a+(3−1)d=13

\begin{gathered}\rm\implies \:a + 2d = 13 - - - (1) \\ \end{gathered}

⟹a+2d=13−−−(1)

Also,

\begin{gathered}\rm \: a_{52} \: = 106 \\ \end{gathered}

a

52

=106

\begin{gathered}\rm \: a + (52 - 1)d = 106 \\ \end{gathered}

a+(52−1)d=106

\begin{gathered}\rm\implies \:\rm \: a + 51d = 106 - - - (2) \\ \end{gathered}

⟹a+51d=106−−−(2)

On Subtracting equation (1) from equation (2), we get

\begin{gathered}\rm \: 49d = 93 \\ \end{gathered}

49d=93

\begin{gathered}\rm\implies \:d \: = \: \dfrac{93}{49} \\ \end{gathered}

⟹d=

49

93

On substituting the value of d in equation (1), we get

\begin{gathered}\rm \: a \: + \: 2 \times \dfrac{93}{49} = 13 \\ \end{gathered}

a+2×

49

93

=13

\begin{gathered}\rm \: a \: + \: \dfrac{186}{49} = 13 \\ \end{gathered}

a+

49

186

=13

\begin{gathered}\rm \: a \: = \: 13 - \dfrac{186}{49} \\ \end{gathered}

a=13−

49

186

\begin{gathered}\rm \: a \: = \: \dfrac{637 - 186}{49} \\ \end{gathered}

a=

49

637−186

\begin{gathered}\rm\implies \:\rm \: a \: = \: \dfrac{451}{49} \\ \end{gathered}

⟹a=

49

451

Now, Consider

\begin{gathered}\rm \: a_{32} \\ \end{gathered}

a

32

\begin{gathered}\rm \: = \: a + (32 - 1)d \\ \end{gathered}

= a+(32−1)d

\begin{gathered}\rm \: = \: a + 31d \\ \end{gathered}

= a+31d

On substituting the values of a and d, we get

\rm \: = \: \dfrac{451}{49} + 31 \times \dfrac{93}{49}=

49

451

+31×

49

93

\rm \: = \: \dfrac{451}{49} + \dfrac{2883}{49}=

49

451

+

49

2883

\begin{gathered}\rm \: = \: \dfrac{451 + 2883}{49} \\ \end{gathered}

=

49

451+2883

\begin{gathered}\rm \: = \: \dfrac{3334}{49} \\ \end{gathered}

=

49

3334

\begin{gathered}\rm\implies \:\boxed{\sf{ \:\rm \:a_{32} = \: \dfrac{3334}{49} \: \: }} \\ \end{gathered}

a

32

=

49

3334

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

↝ Sum of n terms of an arithmetic sequence is,

\begin{gathered}\begin{gathered}\:\:{\underline{{\boxed{\bf{{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}\end{gathered}

S

n

=

2

n

(2a+(n−1)d)

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Similar questions