Math, asked by Sonumaster, 9 days ago

Find the measures of the four angles of a quadrilateral if they are in the ratio 3 : 5 : 7: 9.​

Answers

Answered by uniqueguy
2

Answer:

Step-by-step explanation:

let the ratio be x

3x +5x + 7x + 9x = 360 degrees

24 x=360 degrees

x= 360/24 degrees

x = 15 degrees

3x = 3*15= 45 degrees

5x= 5*15= 75 degrees

7 x = 7 * 15 = 105 degrees

9x = 9*15 = 135 degrees.

hope you understand and please mark me as brainliest

Answered by StarFighter
4

Answer:

Given :-

  • The four angles of a quadrilateral are in the ratio of 3 : 5 : 7 : 9.

To Find :-

  • What are the measures of the angles of a quadrilateral.

Solution :-

Let,

\mapsto \bf First\: Angle_{(Quadrilateral)} =\: 3x

\mapsto \bf Second\: Angle_{(Quadrilateral)} =\: 5x

\mapsto \bf Third\: Angle_{(Quadrilateral)} =\: 7x

\mapsto \bf Fourth\: Angle_{(Quadrilateral)} =\: 9x

As we know that :

\footnotesize \bigstar \: \: \sf\boxed{\bold{\pink{Sum\: of\: all\: angles_{(Quadrilateral)} =\: 360^{\circ}}}}\: \: \: \bigstar\\

According to the question by using the formula we get,

\implies \sf 3x + 5x + 7x + 9x =\: 360^{\circ}

\implies \sf 8x + 16x =\: 360^{\circ}

\implies \sf 24x =\: 360^{\circ}

\implies \sf x =\: \dfrac{360^{\circ}}{24}

\implies \sf\bold{\purple{x =\: 15^{\circ}}}

Hence, the required angles of a quadrilateral are :

\small \dashrightarrow \sf\bold{\red{First\: Angle_{(Quadrilateral)} =\: 3x =\: 3 \times 15^{\circ}  =\: 45^{\circ}}}\\

\small \dashrightarrow \sf\bold{\red{Second\: Angle_{(Quadrilateral)} =\: 5x =\: 5 \times 15^{\circ} =\: 75^{\circ}}}\\

\small \dashrightarrow \sf\bold{\red{Third\: Angle_{(Quadrilateral)} =\: 7x =\: 7 \times 15^{\circ} =\: 105^{\circ}}}\\

\small \dashrightarrow \sf\bold{\red{Fourth\: Angle_{(Quadrilateral)} =\: 9x =\: 9 \times 15^{\circ} =\: 135^{\circ}}}\\

\therefore The measure of all angles of a quadrilateral is 45° , 75° , 105° and 135° .

Similar questions