Math, asked by nathaniamilton13, 6 months ago

find the median for this pls​

Attachments:

Answers

Answered by Mitrang
1

Answer:

30

Step-by-step explanation:

6+9+14+2+19+10=60

Answered by TheProphet
9

S O L U T I O N :

\underline{\bf{Given\::}}

Class - Interval = 0 - 10, 10 - 20, 20 - 30, 30 - 40, 40 - 50, 50 - 60

Frequency =          6           9           14            2           19           10

\underline{\bf{Explanation\::}}

Data represent :

\begin{tabular}{|c|c|c|} \cline{1-3} \multicolumn{3}{|c|}{DATA}\\ \cline{1-3} \bf Class - Interval  & \bf  Frequency, (f) &  \bf Cumulative - frequency } \\ \cline{1-3} 0-10 & 6 & 6 \\ 10-20 & 9 & 15 \\ 20-30 & 14 & 29 \\ 30-40 & 2 & \bf M =  31 \\ 40-50 & 19 & 50\\ 50-60 & 10& 60 \\ \cline{1-3} & \sf N = \sf \Sigma \sf f = \sf 60 & \\  \cline{1-3 } \end{tabular}

A/q

As we know that formula of the median;

\boxed{\bf{Median = l +\bigg( \frac{n/2 - CF}{f}\bigg)  \times h}}

We have :

  • l = 30
  • CF = 30
  • f = 2
  • h = 10
  • N = 60

\longrightarrow\tt{Median = l +\bigg(\dfrac{n/2 - CF}{f} \bigg) \times h}

\longrightarrow\tt{Median = 30 +\bigg(\dfrac{60/2 - 30}{2} \bigg) \times 10}

\longrightarrow\tt{Median = 30 +\bigg(\dfrac{\cancel{60/2} - 30}{2} \bigg) \times 10}

\longrightarrow\tt{Median = 30 +\bigg(\dfrac{30- 30}{2} \bigg) \times 10}

\longrightarrow\tt{Median = 30 +\dfrac{0}{2}  \times 10}

\longrightarrow\tt{Median = 30 + 0  \times 10}

\longrightarrow\tt{Median = 30 + 0 }

\longrightarrow\bf{Median = 30}

Thus,

The median of these data will be 30 .

Similar questions