Math, asked by mohammedfaizan258, 1 year ago

Find the median of the following data:
Marks frequency
less than 10 0
less than 30 10
less than 50 25
less than 70 43
less than 90 65
less than 110 87
less than 130 96
less than 150 100

Answers

Answered by JeanaShupp
64

Answer: The median of the given data is 76.36

Step-by-step explanation:

First we will find \dfrac{n}{2} = \dfrac{100}{2} =50

Therefore from attached table we have CF= 43 , f = 22  and L= 70

As we know  

\text{Median} = L +\dfrac{\dfrac{n}{2}-CF }{f} \times h\\\\=70 + \dfrac{50-43}{22} \times 20\\\\=70+ \dfrac{7}{22} \times 20\\\\=70 +\dfrac{140}{22} =  70+ 6.36=76.36

Hence, the median of the given data is 76.36

Attachments:
Answered by JackelineCasarez
15

Median = 76.36

Step-by-step explanation:

Class interval Frequency  Cumulative frequency  

0−10                            0                      0  

10−30                           10                       10  

30−50                            15                25  

50−70                            18                43  

70−90                           22                65  

90−110                           22                 87  

110−130                            9                        96  

130−150                    4                       100

N = 100, N/2 = 50

The cumulative frequency just greater than N/2 = 50, then median class is 70−90 such that,

lower limit =70,

width of the median class(h)  =  90−70 =20,

f = 22, cf = 43

Median = L + \frac{\frac{9}{2} - CF }{f} × h

= 70 + \frac{50-43}{22} × 20

= 76.36

Learn more: calculate the median

brainly.in/question/21690739

Similar questions