Math, asked by Anonymous, 6 months ago

Find the median of the given series.​

Attachments:

Answers

Answered by Anonymous
149

\begin{tabular}{|c|c|c|}\cline{1-3} X & Frequency & C.f. \\\cline{1-3}0 - 10 & 3 & 3 \\\cline{1-3}10 - 20 & 7 & 10\\\cline{1-3}20 - 30 & 15 & 25\\\cline{1-3}30 - 40 & 9 & 34\\\cline{1-3}40 - 50 & 6 & 40\\\cline{1-3}50 - 60 & 4 & 44\\\cline{1-3}&\sum\limits N = 44&\\\cline{1-3}\end{tabular}

\sf{Median\: class\: {\rightarrow\: Size\: of\: (\dfrac{N}{2})^{th} term}}

\tt:\implies{Size\: of\: (\dfrac{44}{2})^{th} term}

\tt:\implies{Size\: of\: (22)^{th} term}

\therefore{Median\: class = (20 - 30)}

Formula of median is

\large{\underline{\boxed{\tt{Median = L + \dfrac{\frac{N}{2} - C.f}{F} × i}}}}

Where

  • L = Lower limit
  • C.f = Commutative frequency
  • F = frequency
  • i = class interval

\begin{lgathered}\begin{lgathered}\begin{lgathered}\begin{lgathered}\tt {\pink{Here}}\begin{cases} \sf{\green{L = 20}}\\ \sf{\blue{C.f = 10}}\\ \sf{\orange{F = 15}}\\ \sf{\purple{i = 10}}\end{cases}\end{lgathered} \:\end{lgathered}\end{lgathered}\end{lgathered}

Putting values in the formula

\tt:\implies\: \: \: \: \: \: \: \: {M = 20 + \dfrac{22 - 10}{15} × 10}

\tt:\implies\: \: \: \: \: \: \: \: {M = 20 + \dfrac{12}{15} × 10}

\tt:\implies\: \: \: \: \: \: \: \: {M = 20 + 4 × 2}

\tt:\implies\: \: \: \: \: \: \: \: {M = 20 + 8}

\tt:\implies\: \: \: \: \: \: \: \: {\underline{\boxed{\orange{Median = 28\: units}}}}

════════════════════════════════════


EliteSoul: Great
MisterIncredible: Fantastic
Cynefin: Awesome。◕‿◕。
vikram991: Keep it up :)
ButterFliee: Splendid Answer (◍•ᴗ•◍)
Glorious31: Great
Uriyella: Amazing! ♡"
sethrollins13: Awesome !
TheValkyrie: Great!
prince5132: Superb !!
Similar questions