Math, asked by xursua8143, 2 months ago

Find the median wage from the following data:Wages(in Rs) 800 - 820 820 - 840 840 - 860 860 - 880 880 - 900 900 - 920 920 - 940Number of workers 7 14 19 25 20 10 5​

Answers

Answered by RvChaudharY50
11

Solution :-

wages(Rs.)----------- Fi ---------- CF

800 - 820 ----------- 7 ----------- 7

820 - 840 ----------- 14 ----------- 21

840 - 860 ----------- 19 ----------- 40

860 - 880 ----------- 25 ----------- 65

880 - 900 ----------- 20 ----------- 85

900 - 920 ----------- 10 ----------- 95

920 - 940 ----------- 5 ----------- 100

Here , n = 100 .

So,

→ (n/2) = 50 .

Then, Cumulative frequency greater than 50 is 65, corresponds to the class 860 - 880.

Therefore,

→ Class 860 - 880 is the median class.

Now,

  • Median = l + [{(n/2) - cf} / f] * h

from data we have :-

  • l = lower limit of median class = 860
  • n = total frequency = 100
  • cf = Cumulative frequency of class before median class = 40 .
  • f = frequency of median class = 25 .
  • h = size of class = 20 .

Putting all value we get :-

→ Median = 860 + [(50 - 40)/25] * 20

→ Median = 860 + (10/25) * 20

→ Median = 860 + 8

→ Median = 868 (Ans.)

Learn more :-

calculate the median and mode from the following income between (rs)100-200 100-300 100-400 100-500 100-600 no of person...

https://brainly.in/question/23585381

Some students of class X donated for the welfare of old age persons. The contributions are shown in the following distri...

https://brainly.in/question/17314012

Answered by samriddhacdpsn
1

Class interval Frequency

0−100 2

100−200 5

200−300 x

300−400 12

400−500 17

500−600 20

600−700 y

700−800 9

800−900 7

900−1000 4

Medium

Correct option is D)

Computation of Median

Class interval Frequency (f) Cumulative frequency (cf)

0-100 2 2

100-200 5 7

200-300 x 7+x

300-400 12 19+x

400-500 17 36+x

500-600 20 56+x

600-700 y 56+x+y

700-800 9 65+x+y

800-900 7 72+x + y

900-1000 4 76+x + y

Total = 100

We have,

N=∑f

i

=100

⇒76+x+y=100⇒x+y=24

It is given that the median is 525. Clearly, it lies in the class 500−600

∴l=500,h=100,f=20,F=36+x and N=100

Now,

Median=i+

f

2

N

−F

×h

⇒525=500+

20

50−(36+x)

×100

⇒525−500=(14−x)×5

⇒25=70−5x⇒5x=45⇒x=9

Putting x=9 inx+y=24, we get y=15.

Hence, x=9and y=15.

Similar questions