Math, asked by urrbab, 2 months ago

Find the middle term in the expansion of (x −3/x)^10

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Formula Used :-

\rm :\longmapsto\:In \: the \: expansion \: of \:  {(x + a)}^{n}, \: general \: term \: is

 \red{ \boxed{ \sf{T_{r + 1} \:  =  \: ^nC_r \:  {(x)}^{n - r}  \:  {a}^{r} }}}

Middle Term :-

Middle term depends on value of n.

If n is even, there is only one middle term, i.e.

\rm :\longmapsto\:{\bigg(\dfrac{n}{2} + 1 \bigg) }^{th} \: term

And

If n is odd, there are two middle terms, i.e.

\rm :\longmapsto\:{\bigg(\dfrac{n + 1}{2} \bigg) }^{th} \: term \: and \: {\bigg(\dfrac{n + 3}{2} \bigg) }^{th} \: term

Let's solve the problem now!!!

Given expansion is

\rm :\longmapsto\: {\bigg(x - \dfrac{3}{x} \bigg) }^{10}

Here,

n = 10 which is even.

Hence, there is only one middle term, i. e. 6th term.

So, middle term is evaluated as

\rm :\longmapsto\:T_{5 + 1} =  \: ^{10}C_5 \:  {(x)}^{10 - 5}{\bigg(\dfrac{ - 3}{x} \bigg) }^{5}

\rm :\longmapsto\:T_{6} =  \:  \dfrac{10! }{5!  \: 5! }  \:  {(x)}^{5}{\bigg(\dfrac{ - 3}{x} \bigg) }^{5}

\rm :\longmapsto\:T_{6} =  \:  \dfrac{10 \times 9 \times 8 \times 7 \times 6 \times 5!  }{5 \times 4 \times 3 \times 2 \times 1 \times  \: 5! }  \: {( - 3)}^{5}

\rm :\longmapsto\:T_{6} =  - 61236

Additional Information :-

 \red{ \boxed{ \sf{ ^nC_0 = ^nC_n = 1\: }}}

 \red{ \boxed{ \sf{ ^nC_1 = ^nC_{n - 1} = n\: }}}

 \red{ \boxed{ \sf{^nC_r \: =  \:  \frac{n! }{r!  \: (n - r)! }  }}}

 \red{ \boxed{ \sf{ ^nC_r\:  =  \:  \frac{n}{r} \: ^{n - 1}C_{r - 1}}}}

 \red{ \boxed{ \sf{^nC_r \:  +  \: ^{n}C_{r - 1} =  \: ^{n  + 1}C_{r}}}}

 \red{ \boxed{ \sf{ \frac{^nC_r}{^{n }C_{r - 1}}  \: } =  \frac{n - r + 1}{r} }}

 \red{ \boxed{ \sf{ The \: coefficient \: of \:  {x}^{r} \: in \:  {(1 + x)}^{n}   \: is \: \: ^nC_r}}}

 \red{ \boxed{ \sf{ The \: coefficient \: of \:  T_{r + 1} \: in \:  {(1 + x)}^{n}   \: is \: \: ^nC_r}}}

Similar questions