Math, asked by pandeyvedika567k, 10 months ago

find the middle term in the expansion of( x/a-a/x)^10​

Answers

Answered by Nikhi007
1

In the expansion of (a+b)n, there are n+1 terms.Therefore, in the expansion of (x3+9y)10, there are 11 terms.Therefore, 6th term will be middle term6th term=10C5(x3)5(9y)5=10×9×8×7×61×2×3×4×5×x5243×81×243×y5=9×4×7×x51×81×y5=20412x5y5

Answered by Anonymous
17

SOLUTION:-

Given:

The expansion of;

( \frac{x}{a}  -  \frac{a}{x} ) {}^{10}

To find:

The middle term.

Explanation:

We have, n=10 [Even number]

We know that, formula of the middle term;

 =  > ( \frac{n}{2}   + 1) {}^{th}

Therefore,

 =  >  (\frac{10}{2}  + 1) {}^{th}  \\  \\  =  > ( \frac{10 + 2}{2} ) {}^{th}  \\  \\  =  > ( \frac{12}{2} ) {}^{th}  \\  \\  =  > 6th \:term

Now,

 {}^{T} 6 =  {}^{T} 5 + 1 =  {}^{10} C5( \frac{x}{a} ) {}^{10 - 5} ( \frac{ - a}{x} ) {}^{5}  \\  \\  =  >  -  {}^{10} C5 = ( { \frac{x}{a}) }^{5} ( { \frac{a}{x}) }^{5}  \\  \\  =   >   - \frac{10 \times 9 \times 8 \times 7 \times 6 \times 5}{5 \times 5 \times 4 \times 3 \times 2 \times 1} ( { \frac{x}{a} )}^{5} ( \frac{x}{a} ) {}^{ - 5}  \\  \\  =  >  -  \frac{30240}{120}  \\  \\  =  >  - 252

Follow Me :)

Similar questions