Math, asked by Mdarif8630, 1 month ago

Find the middle term of (2x-3/x)^9

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \bigg( 2x -  \frac{3}{x} \bigg)^{9} \\

Here, no. of terms is 10, so, there are two middle terms  T_{\frac{9+1}{2}}\:\:\&\:\:T_{\frac{9+3}{2}}\\

So,

General term,

T_{r+1} =  \:^{9} C _{r}(2x)^{9 - r} . \bigg( \frac{3}{x}  \bigg)^{r}  \\

 \implies \: T_{ \frac{9 + 1}{2} } = T_{ 5 } = T_{ 4 + 1} = \:^{9} C _{4}(2x)^{9 - 4} . \bigg( \frac{3}{x}  \bigg)^{4}  \\

 \implies \:   T_{ 5 }  = \:^{9} C _{4}(2x)^{5} . \bigg( \frac{3}{x}  \bigg)^{4}  \\

 \implies \:   T_{ 5 }  =  \frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1} .32(x)^{5} .  \frac{81}{(x)^{4}}  \\

 \implies \:   T_{ 5 }  =  \frac{9 \times 8 \times 7 \times 6 \times 32 \times 81}{4 \times 3 \times 2 \times 1} (x)  \\

 \implies \:   T_{ 5 }  = 326592x \\

Also,

 \implies \: T_{ \frac{9 + 3}{2} } = T_{ 6 } = T_{ 5 + 1} = \:^{9} C _{5}(2x)^{9 - 5} . \bigg( \frac{3}{x}  \bigg)^{5}  \\

 \implies \:T_{ 6 }  = \:^{9} C _{5}(2x)^{4} . \bigg( \frac{3}{x}  \bigg)^{5}  \\

 \implies \:T_{ 6 }  = \:^{9} C _{5}. {2}^{4} (x)^{4} .  \frac{3 ^{5} }{x^{5} } \\

 \implies \:T_{ 6 }  = \: \frac{^{9} C _{5}. {2}^{4}. {3}^{5}    }{x } \\

Similar questions