Math, asked by mishradn1501, 1 year ago

Find the middle term of the A.P.7,13,19....,241

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\textsf{A.P is 7, 13, 19, .  .  .  .  .  .241}

\underline{\textbf{To find:}}

\textsf{Middle term of the given A.P}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\textsf{7, 13, 19, .  .  .  .  .  .241}

\mathsf{Here,\;First\;term,\;a=7}

\mathsf{common\;difference,\;d=6}

\textbf{Number of terms in the A.P}

\mathsf{n=\dfrac{l-a}{d}+1}

\mathsf{n=\dfrac{241-7}{6}+1}

\mathsf{n=\dfrac{234}{6}+1}

\mathsf{n=39+1}

\mathsf{n=40}

\textsf{Since n is even, the middle terms are}

\mathsf{t_{\frac{n}{2}}\;\;and\;\;t_{\frac{n}{2}+1}}

\implies\mathsf{t_{\frac{40}{2}}\;\;and\;\;t_{\frac{40}{2}+1}}

\implies\mathsf{t_{20}\;\;and\;\;t_{21}}

\mathsf{t_{20}=a+19d}

\mathsf{t_{20}=7+19(6)}

\mathsf{t_{20}=7+114}

\implies\boxed{\mathsf{t_{20}=121}}

\mathsf{t_{21}=a+20d}

\mathsf{t_{21}=7+20(6)}

\mathsf{t_{21}=7+120}

\implies\boxed{\mathsf{t_{21}=127}}

\therefore\textbf{The middle terms are 121 and 127}

Similar questions