Math, asked by ranjeetkeshri26, 1 year ago

Find the middle term of the sequence formed by all numbers 9 and 95,which leave remainder 1 when divided by 3. Also find the number on both sides of the middle term separately


kushanaanandp4ac8a: Elaborate

Answers

Answered by udit14jain
5
The list of numbers between 9 and 95 that 
leave a remainder 1 when divided by 3 is :10, 13, 16, ..........., 94.

The above sequence is an AP with first term,
 a = 10 and common difference, d = 3
Let the number of terms in the above AP = 
Now, an 
= 94⇒a + (n−1)d 
= 94⇒10 + (n−1)3
 = 94⇒3(n−1)
 = 28⇒n−1 
n = 29

Since the number of terms in the above AP is 
odd, so it has only one middle term.

Now, middle term 

(n+12)th term 
= (29+12)th term 
= 15th term

Now, 15th term 
= 15a = a + 14d 
= 10 + 14×3 
= 10+42 
= 52

Now, we know that sum of first n terms of an 
AP is given by,
Sn = n2[2a + (n−1)d]
So
,S14 = 142[2×10+(14−1)(3)] 
= 7×59 
= 413
Now, 
S29 = 292[2×10+(29−1)(3)] 
= 292×104 
= 1508

Now, sum of last 14 terms 
= S29 − [S14 + a15] 
= 1508 − (413+52) 
= 1508−465 
= 1043
Sum of terms on the left side of middle term = S14 
= 13Sum of terms on the right side of middle term 
= sum of last 14 terms is 1043
Similar questions