Find the middle term of the sequence formed by all three-digit numbers
which leave a remainder 2, when divided by 7.
Answers
Answered by
2
Answer:
(ㅅꈍ﹃ꈍ)* нєуα мαтє нєяє'ѕ υя αηѕωєя...!!! *(ꈍ﹃ꈍㅅ)♡
A.P 103,110,117,……..,999
a=103
d=110−103=7
n be the number of terms
a
n
=999
103+(n−1)7=999
(n−1).7=999−103
⇒(n−1).7=896
⇒n−1=896/7
⇒n−1=128
⇒n=128+1
⇒n=129
Middle term =
2
n+1
th
term =
2
129+1
=65
th
term.
=a+6d=103+64×7=551
Sn=
2
n
[2a+(n−1)d]
S
64
=
2
64
[2.103+63.7]
⇒S
64
=20704
S
129
=
2
129
[2.103+128.7]
⇒S
129
=71079
S
129
−(S
64
+551)=71079−(20704+551)
=49824.
【HOPE ITS MAY HELPFUL TO YOU】
【MARK AZ BRAINLIST ANSWER... 】
【Follow me♦️】
Similar questions