Math, asked by suraj5191, 1 year ago

find the middle term of the sequence formed by all three digit numbers which leave a remainder 3 when divided by 4 also find the sum of all number on both sides of the middle term separately

Answers

Answered by sadikalisait
0

The list of 3 digit number that leaves a remainder of 3 when divided by 4 is :


103  ,  107 , 111 , 115 ,   .... 999 


The above list is in AP with first term, a = 103 and common difference, d = 4


Let n be the number of terms in the AP.


Now, an = 999


103 + ( n  -  1 ) 4 =  999


103 + 4n  - 4 =  999


4n  + 99 = 999


4n  =  900


n  =  225 


Since, the number of terms is odd, so there will be only one middle term.



middle term = (n+12)th term = 113th term = a + 112d = 103 + 112×4 = 551


We know that, sum of first n terms of an AP is,Sn = n2[2a+(n−1)d]

Now, Sum = 112/2[2×103 + 111×4] = 36400

Sum of all terms before  middle term  = 36400

sum of all numbers=  225/2[2×103+224×4] = 123975


Now, sum of terms after  middle term = S225 − (S112+551) = 123975−(36400+551) = 87024

 





sreeya2002: Can we get middle term by simply adding 12 to any n value?
goldengem10: how to find the no.s to form the AP?
Similar questions