Math, asked by Reddy16383, 4 months ago

Find the midpoint of(3,0)and(1,4)​

Answers

Answered by ravi2303kumar
0

Answer:

(2,2)

Step-by-step explanation:

given points, (3,0) & (1,4)

=>  x₁ = 3 ,y₁ = 0 &  x₂ = 1, y₂=4

midpoint of 2 points (x₁y₁) & (x₂,y₂) is given by M ,(\frac{x_{1}+x_{2} }{2}  , \frac{y_{1}+y_{2} }{2})

=> midpoint is (\frac{3+1}{2} ,\frac{0+4}{2})

                    = (\frac{4}{2} , \frac{4}{2})

                    = (2,2)

Answered by Asterinn
9

We know that :-

Co-ordinates of midpoint of line joining (a,b) and (c,d) is given as :-

\rm\boxed{\boxed{ \rightarrow \bigg( \large \tt\dfrac{a + c}{2} \: , \: \dfrac{b + d}{2} \bigg)}}

Let point P (k,m) be midpoint of line joining (3,0) and (1,4).

Therefore , co-ordinates of P(k,m) is given as :-

\tt \longrightarrow\bigg( k , m\bigg) =  \bigg( \dfrac{3 + 1}{2} \: , \: \dfrac{4 + 0}{2} \bigg)

\tt \longrightarrow\bigg( k , m\bigg) =  \bigg( \dfrac{4}{2} \: , \: \dfrac{4}{2} \bigg)

\tt \longrightarrow( k , m) =  ( 2 ,2)

Therefore , midpoint of line joining (3,0) and (1,4) = (2,2)

\tt \large \red{Additional-Information :}

\tt \: Equation \: of  \: line \:  passing \:  through  \: points  \: (x_1 , y_1) \:  and \:  (x_2 , y_2) :

\tt \longrightarrow y -  y_1 = x-x_1\bigg(  \dfrac{y_2-y_1}{ x_2-x_1}   \bigg )

\tt \rightarrow  \: here \: \bigg(  \dfrac{y_2-y_1}{ x_2-x_1}   \bigg ) is \: slope \: of \: line

=> Area of triangle when it's vertices are given :-

\rightarrow \tt Area  \: of  \: triangle = \sf{\dfrac{1}{2} \times \left|\begin{array}{c c c} \tt x_{1} & \tt y_{1} & \tt 1 \\ \tt x_{2} & \tt y_{2} & \tt 1 \\ \tt x_{3} & \tt y_{3} & \tt 1\end{array}\right|}

Similar questions