Math, asked by diptic197, 4 months ago

Find the midpoint of the points (2,-6) and (4,-10).

Answers

Answered by negiabhishek236
0

Answer:

We know that end points of a line segment is (a,b) and (c,d), then the midpoint of the line segment has the coordinates:

2

a+c

,

2

b+d

Then mid point of line segment (4,6) and (2,−6) is

2

4+2

,

2

6−6

2

6

,

2

0

⇒(3,0)

Attachments:
Answered by ajay8949
1

 \sf{a(2, - 6)} \: and \: b{(4 ,- 10)}

  \sf\red{by \: midpoint \: formula}

 \boxed{x =  \frac{ \binom{x}{ \:  \:  \: 1}  +  \binom{x}{ \:  \:  \: 2} }{2} } \\

 \boxed{y =  \frac{ \binom{y}{ \:  \:  \: 1}  + \binom{y}{ \:  \:  \: 2}  }{2}}  \\

 \sf \pink{for \: x}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x = \frac{2 + 4}{2}  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x =  \frac{6}{2}  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x = 3

 \sf\green {for \: y}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: y =  \frac{ - 6 + ( - 10)}{2}  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: y =  \frac{ - 6 - 10}{2}  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: y =  \frac{ - 16}{ \:  \:  \:  \: 2}  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: y =  - 8

 \sf{hence \: the \: midpoint \: of \: coordinates \: (3, - 8)}

 \sf\orange{please\:mark\:as\:brainliest............}

Similar questions