Math, asked by allusai6845, 1 year ago

Find the minimum and maximum values of x5-5x4+5x3-10

Answers

Answered by saurabhsemalti
26

y =  {x}^{5}  - 5 {x}^{4}  + 5 {x}^{3}  - 10 \\  \frac{dy}{dx}  = 5x {}^{4}  - 20 {x}^{3}  + 15 {x}^{2}  = 0 \\ x {}^{2} (5 {x}^{2}  - 20x + 15) = 0 \\  {x}^{2} ( {x}^{2}  - 4x + 3) = 0 \\ x = 0 \\ x = 3 \\ x = 1 \\ check \:  \\  \frac{ {d}^{2}y }{d {x}^{2} } at \: these \: points \:
Answered by pinquancaro
17

Answer and Explanation:

Given : Equation x^5-5x^4+5x^3-10

To find : The minimum and maximum values of the equation ?

Solution :

To find the maximum minimum points we find the first derivative and get the critical points then substitute that points in the second derivative.

Let y=x^5-5x^4+5x^3-10

Derivate w.r.t x,

y'=5x^4-20x^3+15x^2

For critical points put y'=0,

5x^4-20x^3+15x^2=0

5x^2(x^2-4x+3)=0

5x^2(x^2-3x-x+3)=0

5x^2(x(x-3)-1(x-3))=0

5x^2(x-1)(x-3)=0

5x^2=0,x-1=0,x-3=0

x=0,1,3

The second derivative is

y''=20x^3-60x^2+30x

Substitute the critical values,

At x=0,

y''=20(0)^3-60(0)^2+30(0)

y''=0

There is no maximum and no minimum value.

At x=1,

y''=20(1)^3-60(1)^2+30(1)  

y''=20-60+30

y''=-10<0

The value is maximum.

At x=0,

y''=20(3)^3-60(3)^2+30(3)

y''=20(27)-60(9)+90

y''=540-540+90

y''=90>0

The value is minimum.

Similar questions