Math, asked by Aditiverma7294, 1 year ago

find the missing frequencies f1 and f2 in table given below; it is being given that the mean of the given frequency distribution is 145.

Attachments:

Answers

Answered by prashilpa
29

Answer:

f2 = 25

f1 = 25.

Step-by-step explanation:

From the table, the sub of frequencies is 80.

That is

10 + f1 + f2 + 15 + 5 = 80

f1 + f2 = 50.  --------------------------------- 1 Equation.

The mean of the frequency distribution is 145.

That is

∑class*frequency / (∑Frequency) = 145.

The class has got a range, instead of single value.

(Like 100 to 120, 120 to 140 etc.)

Hence we need to take average of the value.

(110*10 + 130*f1 + 150*f2 + 170*15 + 190*5) / 80 = 145

130*f1 + 150*f2 = 7000

13*f1 + 15*f2 = 700 ----------------------------- 2 Equation

Multiplying first equation with 13 and subtracting from equation 2 gives us

13*f1 + 15*f2 = 700

13*f1 + 13*f2 = 650

2*f2 = 50

f2 = 25

Thus we get f1 = 25.

Answered by amitnrw
24

Answer:

f1 = 25

f2 = 25

Step-by-step explanation:

100 - 120   10

120 - 140    f1

140-160     f2

160-180     15

180- 200   5

Total  = 80

10 + f1 + f2 + 15 + 5 = 80

=> f1 + f2 = 80 - 30

=> f1 + f2 = 50   - eq 1

100 - 120  , mean = (100 + 120)/2 = 110

frequency = 10

so SubTotal = 110 * 10 = 1100

Similarly

120-140  SubTotal = 130 * f1

140 -160 SubTotal =  150 * f2

160-180 SubTotal = 170*15 = 2550

180 - 200 SubTotal = 190*5 = 950

Total = 1100 + 130f1 + 150f2 + 2550 + 950  = 4600 + 130f1 + 150f2

Total frequencies = 80

Mean = Total / Total Freqeuncies

=> 145 =  (4600 + 130f1 + 150f2)/80

=> 11600 = 4600 + 130f1 + 150f2

=> 130f1 + 150f2 = 7000

=> 13f1 + 15f2 = 700  - eq 2

Eq 2 - 13Eq1

13f1 + 15f2 - 13f1 - 13f2 = 700 - 650

=> 2f2 = 50

=> f2 = 25

Putting in eq 1

f1 + 25 = 50

=> f1 = 25

Similar questions