Math, asked by Anonymous, 6 months ago

Find the missing frequencies in the following frequency distribution table if N = 100 and Median is 32​

Attachments:

Answers

Answered by Anonymous
164
  • {\boxed{\bf{Frequency \: distribution \: table}}}

\bf{\underline{\orange{Class\:interval \qquad \qquad \qquad Frequency}}}

\bf{\underline{\quad 0 -10 \qquad \qquad \qquad \quad  \qquad \qquad \quad 10\quad}}

\bf{\underline{\quad 10 -20 \qquad \qquad \qquad \quad \qquad \qquad \quad f_1\quad}}

\bf{\underline{\quad 20 -30 \qquad \qquad \qquad \quad  \qquad \qquad \quad 25\quad}}

\bf{\underline{\quad 30 -40 \qquad \qquad \qquad \quad \qquad \qquad \quad 30\quad}}

\bf{\underline{\quad 40 -50 \qquad \qquad \qquad \quad \qquad \qquad \quad f_2\quad}}

\bf{\underline{\quad 50-60 \qquad \qquad \qquad \quad \qquad \qquad \quad 10\quad}}\\\\

To find

  • Missing frequencies

Solution

\large{\red{\underline{\boxed{\bf{\red{Median=\left(l + \dfrac{\dfrac{N}{2} - cf}{f}\right)\times{h}}}}}}}\\

  • \sf{l = Lower\:limit}
  • \sf{h =Width\:of\:class}
  • \sf{f = Frequency}
  • \sf{cf = Cumulative\:frequency (preceding\;class)}\\
  • \sf{M_e=Median}

\tt{\underline{\purple{According\:to\:given\: condition}}}\\

\tt{\blue{Let\;the\;missing\;frequencies\;be\;f_1\;and\;f_2}}

  • \sf{10-20(class\:interval)=f_1}
  • \sf{40-50(class\:interval=f_2}
  • \sf{Total\: frequency (N)=100}\\

\implies\tt{10+f_1+25+30+f_2+10=100}\\

\implies\tt{75+f_1+f_2=100}\\

\implies\tt{f_1+f_2=100-75}\\

\implies\tt{f_1+f_2=25}\\

  • \sf{l = 30}
  • \sf{h =10}
  • \sf{f = 30}
  • \sf{cf = (10+f_1+25)=f_1+35}\\
  • \sf{M_e=32}\\

\implies\tt{32=30 +\left( \dfrac{ \dfrac{100}{2} - (f_1+35)}{30}\right)\times{10}}\\\\

\implies\tt{32-30=\left( \dfrac{50 - (f_1+35)}{30}\right)\times{10}}\\\\

\implies\tt{2=\left( \dfrac{50 - f_1 - 35}{30}\right)\times{10}}\\\\

\implies\tt{2=\left( \dfrac{50 - 35 - f_1}{30}\times{10}\right)}\\\\

\implies\tt{2=\left( \dfrac{15 - f_1}{3}\right)}\\\\

\implies\tt{2\times{3}}=15 - f_1\\\\

\implies\tt{6=15-f_1}\\\\

\implies\tt{15-6=f_1}\\\\

\implies\tt{f_1=9}\\\\

  • \tt\underline{\purple{Now\:put\:the\:value\:of\:f_1}}\\

\implies\tt{f_1+f_2=25}\\\\

\implies\tt{9+f_2=25}\\\\

\implies\tt{f_2=25-9}\\\\

\implies\tt{f_2=16}\\\\

  • \underline{\tt{\purple{Hence,missing\: frequencies}}}\\

\tt{\qquad \qquad \qquad f_1=9}\\

\tt{\qquad \qquad \qquad f_2=16}


Vamprixussa: :meow-wow:
amitkumar44481: Perfect :-)
Anonymous: Thank uh Sissy ♡♡
Anonymous: Thanks Bhai ♡♡
EliteSoul: Awesome! ♡
Anonymous: Thnx :meow_blush:
Answered by Anonymous
120

AnsWer :

\boxed{\begin{array}{cccc}\sf Class\: interval&\sf Frequency&\sf Cummulative \: Frequency\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\\\sf 0-10&\sf 10&\sf 10 \\\\\sf 10-20 &\sf x&\sf 10 + x \\\\\sf 20-30 &\sf 25 &\sf 35 + x \\\\\sf 30-40&\sf 30&\sf 65 + x\\\\\sf 40-50 &\sf y &\sf 65 + x + y \\\\\sf 50-60 &\sf 10 &\sf 75 + x + y\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{ \bf75 + x + y}&\frac{\qquad \qquad \qquad \qquad \qquad}{}\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\end{array}}

___________________...

\leadsto\sf 75 + x + y = 100 \\  \\

\leadsto\sf  x + y = 100 - 75 \\  \\

\leadsto\sf  x + y = 25 \:  \:  \:  \:  \Bigg\lgroup\bf{Equation (i)}\Bigg\rgroup \\  \\

______________________

:\implies\sf N=\sum\limits f \\  \\  \\

:\implies\sf \dfrac{N}{2} = \dfrac{\sum\limits f}{2} \\  \\  \\

:\implies\sf \dfrac{N}{2} = \dfrac{100}{2} \\  \\  \\

:\implies\sf\dfrac{N}{2} = 50 \\  \\

___________________

\boxed{\begin{minipage}{6cm}$\bigstar$\:\:\sf Median = l + $\sf\dfrac{\frac{n}{2}-C.f.}{f}\times h\\\\Here:\\1)\:l=Lower\:limit\:of\:median\:class=30\\2)\:C.f.=Cumulative\:frequency\:of\:class\\preceeding\:the\:median\:class=35 + x\\3)\:f= frequency\:of\:median\:class=30\\4)\:h= Class\:interval =10\end{minipage}}

_________________________

\underline{\bigstar\:\textbf{According to the Question :}} \\

\dashrightarrow\sf\:\:Median = l +\dfrac{\frac{n}{2}-C.f.}{f}\times h \\  \\  \\

\dashrightarrow\sf\:\:32 = 30 +\bigg\lgroup\dfrac{50-35 - x}{30}\bigg\rgroup \times 10 \\  \\  \\

\dashrightarrow\sf\:\:32 - 30 = \dfrac{50 - 30 - x}{3} \\  \\  \\

\dashrightarrow\sf\:\:2 \times 3 = 15 - x \\  \\  \\

\dashrightarrow\sf\:\: x = 15 - 6 \\  \\  \\

\dashrightarrow\:\: \underline{ \boxed{\textsf{ \textbf{ x = 9}}}}\\  \\  \\

_____________________.....

\qquad\tiny \dag\:\:\underline{\tt Putting \:  value \:  of  \: x = 9  \: in\: equation  \: (i) \:  we \:  get :} \\

\dashrightarrow\sf\:\:9 + y = 25\\  \\  \\

\dashrightarrow\sf\:\: y = 25 - 9\\  \\  \\

\dashrightarrow\:\: \underline{ \boxed{\textsf{ \textbf{ y = 16}}}}\\  \\  \\


Vamprixussa: Awesome !
Anonymous: Perfect answer :)
EliteSoul: Great
Similar questions