Math, asked by AnanyaBaalveer, 2 days ago

Find the missing frequency..​

Attachments:

Answers

Answered by Evyaan7
5

Answer:

Please Refer to the attachment.

Attachments:
Answered by mathdude500
4

\large\underline{\sf{Solution-}}

The frequency distribution table for calculations of mean using Step Deviation Method are given below :-

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c|c|c|c}\sf Class\: interval&\sf Frequency\: (f_i)&\sf \: midvalue \: (x_i)&\sf \: u_i&\sf \: f_iu_i\\\frac{\qquad  \qquad}{}&\frac{\qquad  \qquad}{}\\\sf 0 - 30&\sf 12&\sf15&\sf - 2&\sf - 24\\\\\sf 30 - 60 &\sf 21&\sf45&\sf - 1&\sf - 21\\\\\sf 60-90 &\sf f_1 &\sf75&\sf0&\sf0\\\\\sf 90 - 120&\sf 52&\sf105&\sf1&\sf52\\\\\sf 120-150&\sf f_2&\sf135&\sf2&\sf2f_2\\\\\sf 150-180&\sf 11&\sf165&\sf3&\sf33\\\frac{\qquad}{}&\frac{\qquad}{}\\\sf & 150\sf & \end{array}}\end{gathered}\end{gathered}\end{gathered}

Now, given that

\rm \: \displaystyle\sum\rm f_i = 150 \\

\rm \: 96 + f_1 + f_2 = 150 \\

\rm\implies \:\boxed{ \rm{ \:f_1 + f_2 = 54 \: }} -  -  - (1) \\

Now,

\rm \: A = 75 \\

\rm \:  \overline{x} \:  =  \: 91 \\

\displaystyle\sum\rm f_iu_i = 40 + 2f_2 \\

\displaystyle\sum\rm f_i = 150 \\

\rm \: h = 30 \\

Now, using Step Deviation Method, mean is evaluated as

\rm \:  \overline{x} \:  =  \: A +  \frac{\displaystyle\sum\rm f_iu_i}{\displaystyle\sum\rm f_i}  \times h \\

So, on substituting the values, we get

\rm \: 91 = 75 + \dfrac{40 + 2f_2}{150} \times 30 \\

\rm \: 91 - 75  = \dfrac{40 + 2f_2}{5}  \\

\rm \: 16  = \dfrac{40 + 2f_2}{5}  \\

\rm \: 40 + 2f_2 = 80 \\

\rm \:  2f_2 = 80 - 40 \\

\rm \:  2f_2 = 40 \\

\rm\implies \:\boxed{ \rm{ \:f_2 \:  =  \: 20 \:  \: }} \\

On substituting this value in equation (1), we get

\rm\implies \:\boxed{ \rm{ \:f_1 \:  =  \: 34 \:  \: }} \\

\rule{190pt}{2pt}

Additional information :-

1. Mean using Direct Method :-

\rm \:  \overline{x} \:  =  \: \frac{\displaystyle\sum\rm f_ix_i}{\displaystyle\sum\rm f_i} \\

2. Mean using Short Cut Method

\rm \:  \overline{x} \:  =  \: A +  \frac{\displaystyle\sum\rm f_id_i}{\displaystyle\sum\rm f_i} \\

Similar questions