Math, asked by paryadav914, 4 months ago

find the missing term in A.p _,8_,_,_, 28​

Answers

Answered by BrainlyPopularman
11

GIVEN :

• An A.P. _,8_,_,_, 28.

TO FIND :

Missing term = ?

SOLUTION :

Here –

➳ a = ?

➳ a + d = 8 ________eq.(1)

➳ a + 2d = ?

➳ a + 3d = ?

➳ a + 4d = ?

➳ a + 5d = 28 ________eq.(2)

• By eq.(2) – eq.(1) :–

⇛ (a + 5d) - (a + d)= 28-8

⇛ 4d = 20

d = 5

• Using eq.(1) –

⇛ a + 5 = 8

a = 3

Hence, The A.P. is 3,8,13,18,23,28.

Answered by BrainlyMan05
5

Answer:

The A.P is 3,8,13,18,23,28,...

Step-by-step explanation:

Question:

Find the missing term in A.P _,8_,_,_, 28

Given:

  • A missing term = _,8_,_,_, 28
  • \sf{a_2=8}
  • \sf{a_6=28}

To find:

  • \sf{a_1}
  • \sf{a_3}
  • \sf{a_4}
  • \sf{a_5}

Solution:

\sf{a_2\:can\:also\:be\:written\:as\:a+d}

\sf{a+d=8} ____(1)

\sf{a_6\:can\:also\:be\:written\:as\:a+5d}

\sf{a+5d=28} ____(2)

Subtracting Equations (1) and (2),

\sf{a+d-(a+5d)=\:-20}

\sf{\cancel{a}+d-\cancel{a}-5d=\:-20}

\sf{-4d=\:-20}

  \boxed{\rm{d = 5}}

We know that \sf{a+d=8}

\sf{a+5=8}

\boxed{\frak{a=3}}

Therefore,

The A.P is 3,8,13,18,23,28,...

Similar questions