Math, asked by Regineiskyut, 6 months ago

Find the missing value to make the following expressions a perfect square trinomial.
1. a2 - 2a +___
2. p2 -- 5p +___
3. b² - 6b+___
4. x²-⅔x +___
plsss show me the solution
i mark you as a brainliest

Answers

Answered by shravanifulpatil
15

Answer:

your answers are

Step-by-step explanation:

1. 1

2. 9

3. 6.25

4. 1/9

Answered by Manmohan04
0

Given,

\[\begin{array}{l}\left( 1 \right){a^2} - 2a + \_\_\\\left( 2 \right){p^2} - 5p + \_\_\\\left( 3 \right){b^2} - 6p + \_\_\\\left( 4 \right){x^2} - \frac{2}{3}x + \_\_\end{array}\]

Solution,

Know that quadratic equation \[a{x^2} + bx + c = 0\] has roots as a perfect square.

\[\begin{array}{l}{b^2} - 4ac = 0\\ \Rightarrow {b^2} = 4ac\\ \Rightarrow c = \frac{{{b^2}}}{{4a}}\end{array}\]

\[\left( 1 \right){a^2} - 2a + \_\_\]

\[a = 1,b =  - 2\]

\[\begin{array}{l}c = \frac{{{b^2}}}{{4a}}\\ \Rightarrow c = \frac{{{{\left( { - 2} \right)}^2}}}{{4 \times 1}}\\ \Rightarrow c = 1\end{array}\]

Hence the expression is \[{a^2} - 2a + 1\]

\[\left( 2 \right){p^2} - 5p + \_\_\]

\[\begin{array}{l}a = 1,b =  - 5\\c = \frac{{{b^2}}}{{4a}}\\ \Rightarrow c = \frac{{{{\left( { - 5} \right)}^2}}}{{4 \times 1}}\\ \Rightarrow c = \frac{{25}}{4}\end{array}\]

Hence the expression is \[{p^2} - 5p + \frac{{25}}{4}\]

\[\left( 3 \right){b^2} - 6p + \_\_\]

\[\begin{array}{l}a = 1,b =  - 6\\c = \frac{{{b^2}}}{{4a}}\\ \Rightarrow c = \frac{{{{\left( { - 6} \right)}^2}}}{{4 \times 1}}\\ \Rightarrow c = \frac{{36}}{4}\\ \Rightarrow c = 9\end{array}\]

Hence the expression is \[{b^2} - 6p + 9\]

\[\left( 4 \right){x^2} - \frac{2}{3}x + \_\_\]

\[\begin{array}{l}a = 1,b =  - \frac{2}{3}\\c = \frac{{{b^2}}}{{4a}}\\ \Rightarrow c = \frac{{{{\left( { - \frac{2}{3}} \right)}^2}}}{{4 \times 1}}\\ \Rightarrow c = \frac{4}{{4 \times 9}}\\ \Rightarrow c = \frac{1}{9}\end{array}\]

Hence the expression is \[{x^2} - \frac{2}{3}x + \frac{1}{9}\].

Similar questions