Math, asked by varshajainj, 2 months ago

Find the mode for the following distribution table.
Class Interval. | frequency
20-30. | 4
30-40. | 7
40-50. | 9
50-60. | 11
60-70. | 6
70-80. | 2​

Answers

Answered by shreyanshyadav233
1

Answer:

I hope you understand it

please mark me brainst answer

Attachments:
Answered by Anonymous
27

Frequency distribution table

\begin{lgathered}\boxed{\begin{array}{c|c} \bf{Class} & \bf{Frequency} \\ \dfrac{\qquad\qquad}{} & \dfrac{\qquad\qquad}{} \\ \sf{20 - 30} & \sf{4} \\ \sf{30 - 40} & \sf{7} \\ \sf{40 - 50} & \sf{9} \\ \sf{50 - 60} & \sf{11} \\ \sf{60 - 70} & \sf{6} \\ \sf{70 - 80} & \sf{2}\end{array}}\end{lgathered}

Modal Class: Class having the greatest frequency is called modal class.

Here,

  • Modal class = 50 - 60

Then,

  • \sf{f_0 = 9}
  • \sf{f_1 = 11}
  • \sf{f_2 = 6}
  • \sf{l = 50}
  • \sf{i = 10}

Formula used

\large{\bf{\longmapsto{\boxed{\pink{Z = l + \dfrac{f_1 - f_0}{2f_1 - f_0 - f_2} \times i}}}}}

Putting all the values

\tt\dashrightarrow{Mode = 50 + \dfrac{11 - 9}{2(11) - 9 - 6} \times 10}

\tt\dashrightarrow{Mode = 50 + \dfrac{2}{22 - 15} \times 10}

\tt\dashrightarrow{Mode = 50 + \dfrac{2}{7} \times 10}

\tt\dashrightarrow{Mode = 50 + \dfrac{20}{7}}

\tt\dashrightarrow{Mode = 50 + 2.85}

\bf\dashrightarrow{\purple{Mode = 52.85}}

⠀⠀\underline{\sf{Thus,\: mode\: of\: the\: data\: is\: 52.85.}}

Similar questions