Math, asked by katkarrushikerh1000, 6 months ago

find the mode for the following frequescy distribution table age (in year) 8-10 = 2 student ,10-12 =7 student,12-14=21 student ,14-16=17 student ,16-18=3 student

Answers

Answered by mathdude500
2

\underline\blue{\bold{Given \:  data \: is:-  }}

Find the mode of the following :-

\begin{gathered} \begin{array}{|c|c|} \bf{x_i} & \bf{f_i} \\ 8 - 10 & 2  \\10 - 12 & 7 \\12 - 14 & 21 \\14 - 16 & 17 \\16 - 18 & 3 \end{array}\end{gathered}

\begin{gathered}\bf\purple{Formula  \: for \:  mode:}\end{gathered}

\boxed{ \boxed{\bf{Mode = l + \bigg(\dfrac{f_1 - f_0}{2f_1 - f_0 - f_2} \bigg) \times h }}}</p><p>

Where,

  • l is lower limit of modal class.
  • \sf{f_1} is  \: frequency  \: of  \: modal  \: class
  • \sf{f_0} \:  is  \: frequency  \: of  \: class  \: preceding \:  modal  \: class
  • \sf{f_2} \: is \:  frequency \:  of  \: class \:  succeeding \:  modal  \: class
  • h is class height.

\underline\blue{\bold{Solution :-  }}

☆ Here,

\begin{gathered}\bf \:  ⟼ \bf\red{l = 12}\end{gathered}

\begin{gathered}\bf \:  ⟼ \bf \:\green{f_1 = 21}\end{gathered}

\begin{gathered}\bf \:  ⟼ \bf \:\purple{f_0 = 7}\end{gathered}

\begin{gathered}\bf \:  ⟼ \bf \:\pink{f_2 = 17}\end{gathered}

\begin{gathered}\bf \:  ⟼ \bf \:\blue{h = 2}\end{gathered}

☆ Now, we know

{{\bf{Mode = l + \bigg(\dfrac{f_1 - f_0}{2f_1 - f_0 - f_2} \bigg) \times h }}}

☆ On substituting the values, we get

{{\bf\bf\implies \:{Mode = 12 + \bigg(\dfrac{21 - 7}{2 \times 21 - 7 - 17} \bigg) \times2  }}}

{{\bf\bf\implies \:{Mode = 12 + \bigg(\dfrac{14}{42 - 24} \bigg) \times2  }}}

{{\bf\bf\implies \:{Mode = 12 + \bigg(\dfrac{14}{18} \bigg) \times2  }}}

{{\bf\bf\implies \:{Mode = 12 + \bigg(\dfrac{7}{9} \bigg) \times2  }}}

{{\bf\bf\implies \:{Mode = 12 + \bigg(\dfrac{14}{9} \bigg) }}}

{{\bf\bf\implies \:{Mode = 12 + \bigg(1.55 \bigg)}}}

{{\bf\bf\implies \:{Mode = 13.55 \: (approx)}}}

\large{\boxed{\boxed{\bf{Hence,  \: Mode = 13.55 \: (approx.)}}}}

Answered by xXQueenLionessXx
2

Answer:

up answer is right hope it helso

Similar questions