Math, asked by kptinagayathri369, 11 months ago

find the mode of data 65-85 85-105 105-125 125-145 145-165 165-185 185-205. frequency is 4,5,13,20,14,8,4?

Answers

Answered by ayushkumarchatra2006
9

Step-by-step explanation:

Interval Frequency Cumulative frequency

65-85 4 4

85-105 5 9

105-125 13 22

125-145 20 42

145-165 14 56

165-185 8 64

185-205 4 68

N = 68

Here; n = 68 and hence

n

2

=

34

So, median class is 125-145 with cumulative frequency = 42

now,

l

=

125

,

n

=

68

,

c

f

=

22

,

f

=

20

,

h

=

20

Median can be calculated as follows:

Median

=

l

+

n

2

c

f

f

×

h

=

125

+

34

22

20

×

20

=

125

+

12

=

137

Calculations for Mode:

Modal class

=

125

145

,

f

1

=

20

,

f

0

=

13

,

f

2

=

14

and

h

=

20

Mode

=

l

+

(

f

1

f

0

2

f

1

f

0

f

2

)

×

h

=

125

+

20

13

2

×

20

13

14

×

20

=

125

+

7

13

×

20

=

125

+

10.77

=

135.77

Calculations for Mean:

Class Interval fi xi di = xi - a ui = di/h fiui

65-85 4 75 -60 -3 -12

85-105 5 95 -40 -2 -10

105-125 13 115 -20 -1 -13

125-145 20 135 0 0 0

145-165 14 155 20 1 14

165-185 8 175 40 2 16

185-205 4 195 60 3 12

Σ fi = 68 Σ fiui = 7

x

=

a

+

Σ

f

i

u

i

Σ

f

i

×

h

=

135

+

7

68

×

20

=

137.05

Mean, median and mode are more or less equal in this distribution.

Similar questions