Math, asked by yashu8392, 6 months ago

find the mode of following
ferquency distribution. class interval:
25-30,30-35,35-40,40-45,45-50,50-55.
ftequency:25,34,50,42,38,15


Answers

Answered by BrainlyEmpire
5

\begin{gathered}\begin{tabular}{|c|c|c|c|c|c|c|}\cline{1-7} \tt Class & \tt 25-30 & \tt 30-35 & \tt 35-40 & \tt 40-45 & \tt 45-50 & \tt 50-55 \\\cline{1-7}\tt Frequency &\tt 25 & \tt 34 & \tt 50 & \tt 42 & \tt 38 & \tt 15 \\\cline{1-7}\end{tabular}\end{gathered}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

Here, Maximum frequency is 50.

Then, the corresponding class 35-40 is the model class.

⠀⠀⠀⠀

\bf{\dag}\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Mode = L + \dfrac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h}}}}\\ \\

Here,

⠀⠀⠀⠀

L = Lower limit = 35

h = Class height = 40 - 35 = 5

\sf f_0, Frequency of the preceding class = 34

\sf f_1, = Frequency of the Model class = 50

\sf f_2, Frequency of the succeeding class = 42

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

\bf{\dag}\;{\underline{\frak{Putting\:values\:in\:formula,}}}\\ \\

:\implies\sf 35 + \dfrac{50 - 34}{(2 \times 50) - 34 - 42} \times 5\\ \\

:\implies\sf 35 + \dfrac{16}{100 - 34 - 42} \times 5\\ \\

:\implies\sf 35 + \dfrac{16}{24} \times 5\\ \\

:\implies\sf 35 + \dfrac{80}{24}\\ \\

:\implies\sf 35 + 3.33\\ \\

:\implies{\underline{\boxed{\frak{\purple{38.33}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Hence,\:The\:mode\:of\:given\:data\;is\; {\textsf{\textbf{38.33}}}.}}}

Answered by Anonymous
51

Answer:

Question

find the mode of following ferquency distribution.

class interval: 25-30,30-35,35-40,40-45,45-50,50-55.

ftequency:25,34,50,42,38,15.

 \bigstar \:   \:   \large\underline{\underline{ \rm  Answer :  - }}

\longrightarrow 38.33

 \bigstar \:   \:   \large\underline{\underline{ \rm  Given :  - }}

class interval :- 25-30,30-35,35-40,40-45,45-50,50-55.

ftequency:25,34,50,42,38,15.

 \bigstar \:   \:   \large\underline{\underline{ \rm  Solution :  - }}

  \sf{\boxed{ \sf \: class \: interval \:  \mid  25  - 30\mid \:  30  - 35\mid \: 35 - 40 \mid \:  \: 40 - 45 \mid \: 45  - 50\mid \: 50 - 55 \mid  } }

  \sf{\boxed{ \sf \: frequency \:   \: \:  \:  \: \:  \mid  25   \:  \: \:   \:  \:  \:  \:  \:  \:  \: \mid \:  34 \:  \:  \:  \:  \:  \:  \:  \:  \: \mid \: 50 \:  \:  \:  \:  \:  \:  \:  \:  \:  \mid \:  \: 42 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \mid \: 38 \:   \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \: \mid \: 14 \: \:  \:  \:  \:   \: \:  \:  \:   \:  \:  \:  \mid  } }

Here is maximum frequency is 50 then the corresponding class 35 - 40 is the model class

L = 35 , h = 40 - 35 = 5 ,f = 50 ,\rm{f_1} = 34 ,\rm{f_2} = 42.

 \:  \:  \:  \:  \rm \:  \: mode \: =  L  +  \frac{f - f_1}{2f -f_1 - f_2} \times h \\

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \rm \:  = 35 +  \frac{50 - 34}{2 \times 50 - 34 - 42}  \times 5 \\

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm \:  = 35 +  \frac{16 \times 5}{24}  \\

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\rm \:  = 35 +  \frac{80}{24}  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \red{ \rm \:  = 38.33}\\

\huge{\bf{\pink{\fcolorbox{yellow}{black}{\underline{\color{aqua}{Høpe thîs helps u}}}}}} \:

Similar questions