Math, asked by varshakrajesh, 2 months ago

find the mode of the following data given ( statistics chapter)​

Attachments:

Answers

Answered by Anonymous
37

Answer:

Required Table :-

 \begin{gathered} \begin{gathered}  \boxed{ \boxed{ \begin{array}{lclcl} \bf \: {ci} \:& \bf{f} \\  \\  \rm 15 - 20 \: & \: 3 \\  \\  \rm20 - 25&8 \\  \\  \rm \: 25 - 30 \:  & \: 9 ( f_{0})\\  \\  \rm(l)30 - 35 \: & \: 10 ( f_{1}) \\  \\  \rm \: 35 - 40&3( f_{2}) \\  \\  \rm40 - 45&0 \\  \\  \rm45 - 50&0 \\  \\  \rm50 - 55&2 \end{array}}}\end{gathered} \end{gathered}

From Table,

  • lower boundary (l) = 30

  • f1 = 10, f0 = 9 , f2 = 3

  • height (h) = 30 - 25 = 5

We know that,

  • { \sf{Mode =  l +  \bigg( \frac{ f_{1} -  f_{0}}{2 f_{1} -  f_{0} - f_{2} } \bigg) \times h}} \\

Let's substitute those values in formula,

  { \implies{ \sf{Mode = 30 +  \bigg( \frac{10 - 9}{2(10) - 9 - 3}  \bigg) \times 5}}} \\  \\ \implies{ \sf{Mode = 30 +  \bigg( \frac{1}{20 - 12}  \bigg) \times 5}} \\  \\\implies{ \sf{Mode = 30 +  \bigg( \frac{1}{8} \bigg) \times 5 }}  \\  \\ \implies{ \sf{Mode = 30 +  \frac{5}{8} }} \\  \\ \implies{ \sf{Mode = 30 + 0.625}} \\  \\ \implies{ \sf{Mode = 30.62}}

Therefore,

  • Mode of given data = 30.62
Similar questions