Math, asked by kshendey97, 3 months ago

find the mode of the following distribution monthly wages200-220,220-240,240-260,260-280,280-300,300-320
no of workes7,15,20,20,10,2​

Answers

Answered by llXxDramaticKingxXll
0

Step-by-step explanation:

I hope it will be help full for you

Attachments:
Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Here, the largest frequency 20 repeated twice.

  • So, its a bi-modal series.

Hence, to find the mode of series, we use Empirical Formula.

So, we first evaluate Median.

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c|c}\sf Class\: interval&\sf Frequency\: (f)&\sf \: cumulative \: frequency\\\frac{\qquad\qquad}{}&\frac{\qquad  \qquad}{}\\\sf 200 - 220&\sf 15&\sf15\\\\\sf 220 - 240 &\sf 7&\sf22\\\\\sf 240-260 &\sf 20&\sf42\\\\\sf 260 - 280&\sf 20&\sf62\\\\\sf 280-300&\sf 10&\sf72\\\\\sf 300-320&\sf 2&\sf74\\\frac{\qquad}{}&\frac{\qquad}{}\\\sf & \sf & \end{array}}\end{gathered}\end{gathered}\end{gathered}

Median formula -

\rm :\longmapsto\:\boxed{ \sf M= l + \Bigg \{h \times \dfrac{ \bigg( \dfrac{N}{2} - cf \bigg)}{f} \Bigg \}}

Here,

  • l denotes lower limit of median class

  • h denotes width of median class

  • f denotes frequency of median class

  • cf denotes cumulative frequency of the class preceding the median class

  • N denotes sum of frequency

According to the question,

  • Here, N = 74

So,

  • N/2 = 37

  • median class is 240 - 260

so,

  • l = 240,

  • h = 20,

  • f = 20,

  • cf = cf of preceding class = 23

By substituting all the given values in the formula,

\dashrightarrow\sf M= l + \Bigg \{h \times \dfrac{ \bigg( \dfrac{N}{2} - cf \bigg)}{f} \Bigg \}

\dashrightarrow\sf M= 240 + \Bigg \{20 \times \dfrac{ ( 37 - 22)}{20} \Bigg \}

\dashrightarrow\bf M= 240 + 15 = 255 -  - (1)

Now, we evaluate mean of the given data.

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c|c|c|c}\sf Class\: interval&\sf Frequency\: (f_i)&\sf \: midvalue \: (x_i)&\sf \: u_i&\sf \: f_iu_i\\\frac{\qquad  \qquad}{}&\frac{\qquad  \qquad}{}\\\sf 200 - 220&\sf 15&\sf210&\sf - 2&\sf - 30\\\\\sf 220 - 240 &\sf 7&\sf230&\sf - 1&\sf - 7\\\\\sf 240-260 &\sf 20 &\sf250 -A &\sf0&\sf0\\\\\sf 260 - 280&\sf 20&\sf270&\sf1&\sf20\\\\\sf 280-300&\sf 10&\sf290&\sf2&\sf20\\\\\sf 300-320&\sf 2&\sf310&\sf3&\sf6\\\frac{\qquad}{}&\frac{\qquad}{}\\\sf & \sf & \end{array}}\end{gathered}\end{gathered}\end{gathered}

Here,

 \:  \:  \: \:  \:  \:  \:   \:  \bull \:  \sf \: A \:  =  \: 250

 \:  \:  \: \:  \:  \:  \:   \:  \bull \:  \sf \: h \:  =  \: 20

 \:  \:  \: \:  \:  \:  \:   \:  \bull \:  \sf \:  \sum \:  \: f_i \:  =  \: 74

 \:  \:  \: \:  \:  \:  \:   \:  \bull \:  \sf \:  \sum \: f_iu_i  \:  =  \: 9

Mean is given by

\dashrightarrow\sf Mean = \: A \:  +  \:  \dfrac{ \sum f_i u_i}{ \sum f_i} \times h

\dashrightarrow\sf Mean = \: 250 + \dfrac{9}{74}  \times 20

\dashrightarrow\sf Mean = \: 250 + \dfrac{37}{90}

\dashrightarrow\sf Mean = \: 250 + 2.43

\dashrightarrow\sf Mean =252.43

Hence,

Mode is evaluated using Empirical Formula as

\rm :\longmapsto\:Mode =3Median -  2Mean

\rm :\implies\:Mode = 3 \times 255 - 2 \times 252.43

\bf :\implies\:Mode = 765 - 504.86 = 260.14

Additional Information :-

Mean using direct Formula

\dashrightarrow\sf Mean = \dfrac{ \sum f_i x_i}{ \sum f_i}

Mean using Short Cut Method

\dashrightarrow\sf Mean = \: A \:  +  \:  \dfrac{ \sum f_i d_i}{ \sum f_i}

Similar questions