Math, asked by bajajpriyanka, 3 months ago

Find the mode of the following frequency distribution ​

Attachments:

Answers

Answered by XxMrZombiexX
197

Answer:

mode = 67

Step-by-step explanation:

\begin{gathered}\boxed {\begin{array}{c|c|c|c|c|c|c |c }\bf {Class\:} &\sf 0 - 15 & \sf 15 - 30&\sf 30 - 45 &\sf 45 - 60 & 60 - 75&\sf75 - 90& \sf  90 - 105\\&&&&&&&\\ \bf Frequency &\sf 4 &\sf 5&\sf 23 &\sf 45 &\sf 66&\sf 42& \sf15 \\&&&&&&\\ \end {array}}\end{gathered}

\blue{\huge\underline{\underline{\qquad\qquad Solution  \qquad \qquad}}}

 \sf \: Largest  \: Frequency \:  is  \: \red{ 66 } \: it \:  is \:  in \:  class   \:  \: \red{60 - 75 }

❒ \: \sf \ell = lowar  \: limit \:  of \:  the  \: model  \: class  \implies \green{ 60 }

❒ \:  \: \sf C = size \:  of  \: class  \: interval \:  \implies \green{15}

❒ \:  \: \sf f_1 =  Frequency  \: of \:  the  \: model \:  class  \: \implies \green{66} \:

❒ \:  \: \sf f_0=Frequency \:  of  \: the \:  class  \: \sf preceding  \: the  \: modal  \: c lass \implies \green{45}

❒ \:  \: \sf f_2=Frequency \:  of  \: the \:  class  \: \sf \: suceding \:  \: the  \: modal  \: c lass \implies \green{42}

_____________________________

Mode is dinner denoted bi capital Z

\sf formula \:  of  \: mode \longrightarrow  \pink{\boxed{ Z =\ell +\bigg\lgroup \dfrac{f_1-f_0}{2f_1-f_0-f_2}\bigg\rgroup ×C}}</p><p>

♤substituting the values we get,

: \tt\longrightarrow Z =\ell +\bigg\lgroup \dfrac{f_1-f_0}{2f_1-f_0-f_2}\bigg\rgroup ×C \\  \\  \\  \\ \tt :\longrightarrow Z =60 +\bigg\lgroup \dfrac{66 - 45}{2(66) - 45 - 42}\bigg\rgroup ×15 \\  \\  \\  \\ : \tt\longrightarrow Z =60 + \bigg\lgroup \dfrac{21}{132 - 87}\bigg\rgroup  \times 15 \\  \\  \\  \\  \tt :  \longrightarrow \: Z = 60 +  \bigg \lgroup \dfrac{21}{45}  \bigg \rgroup \times 15 \\  \\  \\  \\ \tt :  \longrightarrow \: Z = 60 + \dfrac{21 \times 15}{45}  \\  \\  \\  \\ \tt :  \longrightarrow \: Z = 60 + \dfrac{ \cancel{315}}{ \cancel{45} } \\  \\  \\  \\ \tt :  \longrightarrow \: Z = 60 +7 \\  \\  \\  \\ \tt :  \longrightarrow \: Z = 67

The mode of the following Frequency = 67

Answered by Anonymous
3

Answer:

refer to the above attachment

Attachments:
Similar questions