Math, asked by ayushi0106, 1 month ago

Find the Modules & argument of the complex Number 4√3 + 4i.​

Answers

Answered by Anonymous
6

Given : Complex number is  4\sqrt{3}+4i

‎ ‎ ‎

To find : Modulus and argument of the given complex number.

‎ ‎ ‎

Solution :

Let's say the given complex number be,

  •  z = 4\sqrt{3}+4i

And Assume that,

  •  y = {\sf{Im}}(z)=4
  •  x = {\sf{Re}}(z) =4\sqrt{3}

Modulus of a complex number is given by,

  •  \overline{z} = r =  \sqrt{x^{2} +  {y}^{2}  }

Substitute the values of  x and  y

 \implies  r =  \sqrt{x^{2} +  {y}^{2}  }

 \implies  r =  \sqrt{(4 \sqrt{3}) ^{2} +  {(4)}^{2}  }

 \implies  r =  \sqrt{48 + 16 }

 \implies  r =  \sqrt{64 }

 \implies  r = 8

So the modulus of the given complex number is  8 .

Argument of a complex number in first quadrant is defined as,

  •  \theta = \tan^-\left|\dfrac{y}{x}\right|

Here,

  •  \theta = Argument of the complex number.

  •  y = Imaginary part of complex number.

  •  x = Real part of the complex number

By substituting the values of  x and  y , we get :

 \implies   \theta = \tan^-\Big|\dfrac{y}{x}\Big|

\implies   \theta = \tan^-\bigg|\dfrac{4}{4 \sqrt{3} }\bigg|

\implies   \theta = \tan^-\bigg|\dfrac{ \not4}{ \not4 \sqrt{3} }\bigg|

\implies   \theta = \tan^-\bigg|\dfrac{ 1}{ \sqrt{3} }\bigg|

\implies   \theta =  \dfrac{\pi}{6}

Hence the argument of the given complex number is \dfrac{\pi}{6}

Additional information :-

  • Argument of complex number in 1st quadrant is given by  \theta where  \theta is measured anticlockwise.

  • Argument of complex number in 2nd quadrant is given by  \pi - \theta where  \theta is measured anticlockwise.

  • Argument of complex number in 3rd quadrant is given by  \theta - \pi and  \theta is measured clockwise .

  • Argument of complex number in 4th quadrant is given by  - \theta where \theta is measured clockwise.
Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given complex number is

\rm :\longmapsto\:4 \sqrt{3} + 4i

Let we assume that

\rm :\longmapsto\:4 \sqrt{3} + 4i = r(cos\theta  + isin\theta )

where,

 \red{ \rm :\longmapsto\:r \: is \: modulus \: or \: length \: of \: complex \: number}

and

 \red{ \rm :\longmapsto\:\theta  \: is \: argument \: of \: complex \: number}

So,

\rm :\longmapsto\:4 \sqrt{3} + 4i = rcos\theta  + i \: r \: sin\theta

On comparing, Real part on both sides, we get

\red{ \rm :\implies\:\boxed{ \sf{ \:rcos\theta  = 4 \sqrt{3}}}} -  -  - (1)

and

On comparing Imaginary parts on both sides, we get

\red{ \rm :\implies\:\boxed{ \sf{ \:rsin\theta  = 4 }}} -  -  - (2)

On squaring equation (1) and (2) and adding we get

\rm :\longmapsto\: {r}^{2} {cos}^{2}\theta  +  {r}^{2} {sin}^{2}\theta  = 48 + 16

\rm :\longmapsto\: {r}^{2}( {cos}^{2}\theta+ {sin}^{2}\theta)= 64

\rm :\longmapsto\: {r}^{2}(1)= 64

\rm :\longmapsto\: {r}^{2}= 64

\bf\implies \:r = 8 \:  \: as \: r \:  \cancel <  \: 0 -  -  -  - (3)

Now, on substituting r = 8 in equation (2) and (3), we get

\rm :\longmapsto\:8cos\theta  = 4 \sqrt{3}

\bf\implies \:cos\theta  = \dfrac{ \sqrt{3} }{2}  -  -  -  - (4)

and

\rm :\longmapsto\:8sin\theta  = 4

\bf\implies \:sin\theta  = \dfrac{1}{2}  -  -  -  - (5)

As,

\rm :\longmapsto\:sin\theta > 0 \:  \: and \:  \: cos\theta  > 0

\rm :\implies\:\theta  \: lies \: in \:  {1}^{st}  \: quadrant

\bf\implies \:\theta  \:  =  \: \dfrac{\pi}{6}

Hence,

 \: \:  \:  \:  \:   \:  \:  \:  \:  \: \red{ \boxed{ \sf{ \: |z| = 8}}} \:  \:  \:  \green{and} \:  \:  \: \red{ \boxed{ \sf{ \:arg(z) = \dfrac{\pi}{6} \: }}}

Additional Information :-

\red{ \boxed{ \sf{ \: {i}^{2} \:  =  \:  - 1 \:  \: }}}

\red{ \boxed{ \sf{ \: {i}^{3} \:  =  \:  -i \:  \: }}}

\red{ \boxed{ \sf{ \: {i}^{4} \:  =  \:  1 \:  \: }}}

\red{ \boxed{ \sf{ \: { \omega}^{3} = 1}}}

\red{ \boxed{ \sf{ \:1 +  \omega \:  +  \:  { \omega}^{2} = 0}}}

Similar questions