Find the modules and argument of the complex no. (1+i)(1+√3i)/1-i
Answers
Answered by
0
Step-by-step explanation:
jfetgd ch xgxhxyfuxearxyfrRxuvkxfx tu vkvi
Answered by
2
Answer:
(1+i)(1+√3i)/(1-i)= -√3+i
Step-by-step explanation:
(1+i)(1+√3i)/(1-i)
=1(1+√3i)+i(1+√3i)/(1-i)
=1+√3i+i+√3i^2/(1-i)
=1+√3i+i-√3/(1-i)
=(1-√3)+(1+√3)i/(1-i)
On Rationalization,
=(1-√3)+(1+√3)i × (1+i)/(1-i)×(1+i)
=1{(1-√3)+(1+√3)i}+i{(1-√3)+(1+√3)i}/1^2-i^2
=1-√3+i+√3i+i-√3i+i^2+√3i^2/1+1
=1-√3+i+√3i+i-√3i-1-√3/2
= -2√3+2i/2
=2(-√3+i)/2
= -√3+i
Similar questions