Find the modulus and amplitude for each of the following complex numbers:
i) 7 - 5i
ii)
iii) -8 + 15i
iv) -3(1 - i)
Answers
Answer:
Step-by-step explanation:
Hi,
If z = a + ib is any complex number such that a ∈R, b∈R
and i = √-1,
then the modulus of complex number, |Z| is given by
|Z| = √a² + b²
Amplitude of the complex number , θ is given by,
θ = tan⁻¹(b/a)
i) Z = 7 - 5i
Modulus,|Z| = √7² + 5² = √74
Amplitude,θ = tan⁻¹(-5/7) = -tan⁻¹(5/7)
ii) Z = √3 + i√2i
Modulus,|Z| = √(√3)² + (√5)² = √3 + 5 = √8
Amplitude,θ = tan⁻¹(√2/√3)
iii) Z = -8 + 15i
Modulus,|Z| = √8² + 15² = √289 = 17
Amplitude,θ = tan⁻¹(15/-8) = -tan⁻¹(15/8)
iv) Z = -3(1 - i)
= -3 + 3i
Modulus,|Z| = √3² + 3² = √18 = 3√2
Amplitude,θ = tan⁻¹(3/-3) = -tan⁻¹(1) = -π/4
Hope, it helps !
Answer:
Modulus
(1) 7-5i
a=7
b=5
|Z|= √a^2+b^2
= √(7)^2+(5)^2
= √49+25
= √74
(2) √3+√2i
a=√3
b=√2
|Z|=√a^2+b^2
=√(√3)^2+(√2)^2
=√3+2
=√5
(3) -8+15i
a=(-8)
b=15
|Z|=√a^2+b^2
= (-8)^2+(15)^2
=√64+225
=√289
=17
(4) -3(1-i)
-3+I
a=-3
b=1
|Z|=√a^2+b^2
=√(-3)^2+(1)^2
=√9+1
=√10
Hope this will help you
Step-by-step explanation: