Math, asked by npkumavat2255, 3 months ago

Find the modulus and amplitude of complex number. 8+15i and express it into pollar form and exponential form

Answers

Answered by Anonymous
34

Given expression,

 \sf \: z = 8 + 15 \iota

Now,

 \sf \: lf \: z = a +   b\iota \: then \:  |z|  =  \sqrt{ {a}^{2} +  {b}^{2}  }

Therefore,

 \sf \:  |z|  =  \sqrt{8 {}^{2}  + {15}^{2}  }   \\ \\  \longrightarrow \sf \:  |z|  =  \sqrt{64 + 225}  \\  \\   \longrightarrow \sf \:  |z|  =  \sqrt{289} \\  \\   \longrightarrow \boxed{ \boxed{ \sf \:  r  =  17}}

Amplitude will be :

Since, 8 and 15 lie in first quadrant.

 \sf \:  \alpha  =  tan {}^{ - 1} ( \dfrac{15}{8} )

Therefore,

 \sf \: tan \:  \alpha  =    \dfrac{15}{8}  \\  \\  \longrightarrow \sf \:  \dfrac{sin \:  \alpha  }{cos \:  \alpha }  =  \dfrac{ \dfrac{15}{ \sqrt{ {15}^{2} +  {8}^{2}  } } }{ \dfrac{8}{ \sqrt{ {15}^{2}  +  {8}^{2} } } }  \\  \\  \longrightarrow \sf \: sin \:  \alpha  =  \dfrac{15}{17}  \: and \: cos \:  \alpha  =  \dfrac{8}{17}

Polar form :

 \sf \: z = r(cos \:  \alpha  +  \iota \: sin\:  \alpha ) \\  \\  \longrightarrow \boxed{ \boxed{ \sf \: z = 17(cos \:  \alpha  +  \iota \: sin\:  \alpha )}}

Exponential Form :

 \sf \: z = re {}^{ \iota   \alpha } \\ \\ \longrightarrow \boxed{\boxed{\sf z = 17e^{\iota \alpha}}}


npkumavat2255: thank you
Anonymous: Niceeee as always :)
Anonymous: The next time you spell my name, make sure you get it right. :)
Answered by Toxicbanda
26

Answer:

\implies{\boxed{\sf{r=17}}}

\implies{\boxed{\sf{Amplitude=tan^{-1}\Bigg(\dfrac{15}{8}\Bigg)}}}

\implies{\boxed{\sf{z\;(Polar\;Form)=17(\cos \theta + i\sin \theta)}}}

\implies{\boxed{\sf{z\;(Exponential\;form)=17\exp^{i\theta}}}}

Step-by-step explanation:

Given:

  • Complex number = 8 + 15i

To Find:

  • Modulus
  • Amplitude

Formula used:

  • \sf{|z|=\sqrt{a^{2}+b^{2}}}

Let, z = 8 + 15i

Here, a = 8 and b = 15.

\implies{\sf{|z|=r=\sqrt{a^{2}+b^{2}}}}

\implies{\sf{r=\sqrt{8^{2}+15^{2}}}}

\implies{\sf{r=\sqrt{64+225}}}

\implies{\sf{r=\sqrt{289}}}

\implies{\sf{r=17}}

\therefore{\boxed{\sf{r=17}}}

We know that, (8, 15) lies in 1st quadrant,

\implies{\sf{Amplitude=tan^{-1}\Bigg(\dfrac{b}{a}\Bigg)}}

\implies{\sf{Amplitude=tan^{-1}\Bigg(\dfrac{15}{8}\Bigg)}}

\therefore{\boxed{\sf{Amplitude=tan^{-1}\Bigg(\dfrac{15}{8}\Bigg)}}}

Now, we will convert into Polar form:

\implies{\sf{z=r(\cos \theta + i\sin \theta)}}

\implies{\sf{z=17(\cos \theta + i\sin \theta)}}

\therefore{\boxed{\sf{z=17(\cos \theta + i\sin \theta)}}}

Now, we will convert into exponential form:

\implies{\sf{z=r\exp^{i\theta}}}

\implies{\sf{z=17\exp^{i\theta}}}

\therefore{\boxed{\sf{z=17\exp^{i\theta}}}}


Anonymous: Vgood answer ✨ (:
Similar questions