Math, asked by LoverBoy346, 1 month ago

find the modulus and argument of -16/1+i√3​

Answers

Answered by MysticSohamS
1

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

so \: here \: given \: complex \: number \: is \\  \frac{ - 16}{1 +  \sqrt{3}.i }  \\  \\ z =  \frac{ - 16}{1 +  \sqrt{3} .i}  \\  \\  =  \frac{ - 16}{1 +  \sqrt{3} .i}  \:  \times  \:  \frac{1 -  \sqrt{3} i}{1 -  \sqrt{3} i}  \\  \\  =  \frac{ - 16(1 -  \sqrt{3}i) }{(1) {}^{2}  - ( \sqrt{3}i) {}^{2}  }  \\  \\  =  \frac{ - 16(1 -  \sqrt{3} i)}{1 - 3i {}^{2} }  \\  \\  =  \frac{ - 16(1 -  \sqrt{3} i)}{1  - 3( - 1)}  \\  \\  =  \frac{ - 16(1 -  \sqrt{3}i) }{1 + 3}  \\  \\  =  \frac{ - 16(1 -  \sqrt{3}i }{4}  \\  \\  =  - 4(1 -  \sqrt{3} i) \\  \\  =  - 4 + 4 \sqrt{3} i \\  \\ comparing \: real \: parts \: and \: imaginary \: parts \\ we \: have \: then \\  \\ a =  - 4 \\ b = 4 \sqrt{ 3}  \\  \\ we \: know \: that \\  \\  |z|  =  \sqrt{a {}^{2} + b {}^{2}  }  \\  \\  =  \sqrt{( - 4) {}^{2}  + (4 \sqrt{3} ) {}^{2} }  \\  \\  =  \sqrt{16 +48 }  \\  \\  =  \sqrt{64}  \\  \\  |z|  = 8

thus \: then \: accordingly \\  \\ arg \: (z) =θ = tan \:  {}^{ - 1}  \: ( \frac{b}{a}  \: ) \\  \\ tan \: θ =  \frac{b}{a}  \\  \\  =  \frac{4 \sqrt{3} }{ - 4}  \\  \\  =  -  \sqrt{3}  \\  \\ so \: we \: know \: that \\  \\ tan \:  \frac{\pi}{3}  =   \sqrt{3}  \\  \\ but \: as \: (a,b) = ( - 4 ,4 \sqrt{3}  \: ) \: lies \: in \\ quadrant \: 2 \\  \\ tan \: θ =  120 =(  \frac{2\pi}{3}  \: ) {}^{c}

Similar questions