Math, asked by gurshaansinghtiwana, 6 hours ago

find the modulus and argument of the complex no. z = -1 -√3i

Answers

Answered by mathdude500
7

 \large\underline{\sf{Solution-}}

Given complex number is

\rm :\longmapsto\:z =  - 1 -  \sqrt{3}i

To find the modulus and argument of complex number, we have to reduce to polar form.

So, Let assume that

\rm :\longmapsto\: - 1 -  \sqrt{3}i = r(cos\theta  + isin\theta )

\rm :\longmapsto\: - 1 -  \sqrt{3}i = rcos\theta  + i \: rsin\theta

On comparing, real and Imaginary parts, we get

\rm :\longmapsto\:rcos\theta  =  - 1 -  -  -  - (1)

and

\rm :\longmapsto\:rsin\theta  =  -  \sqrt{3}  -  -  -  - (2)

Squaring equation (1) and (2) and adding, we have

\rm :\longmapsto\: {r}^{2} {cos}^{2}\theta  +  {r}^{2} {sin}^{2}\theta  = 1 + 3

\rm :\longmapsto\: {r}^{2} ({cos}^{2}\theta  + {sin}^{2}\theta)  =4

\rm :\longmapsto\: {r}^{2}  =4

\rm\implies \:r = 2 -  -  -  (3)

So, it means modulus of complex number is 2.

On substituting the value of r in equation (1) and (2), we get

\rm :\longmapsto\:cos\theta  =  - \dfrac{1}{2}

and

\rm :\longmapsto\:sin\theta  =  - \dfrac{ \sqrt{3} }{2}

\rm :\longmapsto\:as \: sin\theta  < 0 \:  \: and \:  \: cos\theta  < 0

\rm\implies \:\theta  \:  \in \:  {3}^{rd} \: quadrant

\rm\implies \:\theta  =  - \pi + \dfrac{\pi}{3}

\rm\implies \:\theta   \: =  \:  -  \:  \dfrac{2\pi}{3}

\rm\implies \:arg(z)   \: =  \:  -  \:  \dfrac{2\pi}{3}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

Argument Short Trick

\begin{gathered}\boxed{\begin{array}{c|c} \bf Complex \: number & \bf arg(z) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf x + iy & \sf  {tan}^{ - 1}\bigg |\dfrac{y}{x} \bigg|   \\ \\ \sf  - x + iy & \sf \pi - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf  - x - iy & \sf  - \pi + {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf x - iy & \sf  - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \end{array}} \\ \end{gathered}

Similar questions