Math, asked by beheramonalisabehera, 1 month ago

find the modulus and argument of the complex no z= 1+cos2pai/3+ i sin 2 pai/3 ​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

z = 1 +  \cos \bigg( \frac{2\pi}{3} \bigg)  + i \sin \bigg( \frac{2\pi}{3}  \bigg)  \\

 \implies \: z =   2\cos^{2}  \bigg( \frac{\pi}{3} \bigg)  + i .2\sin \bigg( \frac{\pi}{3}  \bigg) \cos \bigg( \frac{\pi}{3}  \bigg)\\

 \implies \: z =   2.  \bigg( \frac{1}{2} \bigg)^{2}   + i .2\bigg( \frac{  \sqrt{3} }{2}  \bigg).\bigg( \frac{1}{2}  \bigg)\\

 \implies \: z =   2. \bigg( \frac{1}{4} \bigg)   + i .2\bigg( \frac{  \sqrt{3} }{4}  \bigg)\\

 \implies \: z =    \bigg( \frac{1}{2} \bigg)   + i \bigg( \frac{  \sqrt{3} }{2}  \bigg)\\

 \implies \: z =    \frac{1}{2} (1  + i   \sqrt{3} )\\

So,

 |z|  =  \sqrt{ \bigg(   \frac{1}{2}  \bigg)^{2} +\bigg(   \frac{ \sqrt{3} }{2}  \bigg)^{2}   }  \\

 \implies |z|  =  \sqrt{  \frac{1}{4} +   \frac{ 3 }{4}    }  \\

 \implies |z|  =  \sqrt{    \frac{1 +  3 }{4}    }  \\

 \implies |z|  =  \sqrt{    \frac{4}{4}    }  \\

 \implies |z|  =  1 \\

And,

 \arg(z) =  \tan^{ - 1}   \bigg| \frac{ \frac{ \sqrt{3} }{2} }{ \frac{1}{2} }  \bigg|  \\

  \implies\arg(z) =  \tan^{ - 1}   \bigg| \frac{ \ \sqrt{3}}{ 1 }  \bigg|  \\

  \implies\arg(z) =  \tan^{ - 1}   |  \sqrt{3} |  \\

  \implies\arg(z) =  \tan^{ - 1}    \sqrt{3}   \\

  \implies\arg(z) =   \frac{\pi}{3}  \\

Similar questions