Math, asked by Anonymous, 5 hours ago

Find the modulus and argument of the complex number z = -7+24i​

Answers

Answered by Anonymous
15

Given :-

  • Complex number  z = -7 +24i

To find :-

  • Modulus and argument of z

Solution :-

Let's assume,

  •  x = -7\:  (\sf{Real\:part)}
  •  y = 24 \:(\sf{Imaginary\:part)}

Modulus of a complex number is given by:

 \displaystyle \rm{:\implies |z|=\sqrt{Re(z)^2+Im(z)^2}}

 \displaystyle {:\implies |z|=\sqrt{(x)^2+(y)^2}}

 \displaystyle {:\implies |z|=\sqrt{( - 7)^2+(24)^2}}

 \displaystyle {:\implies |z|=\sqrt{49+576}}

 \displaystyle {:\implies |z|=\sqrt{625}}

 \displaystyle {:\implies |z|=25}

Hence the modulus of z is 25.

\displaystyle {:\implies  \alpha  =  \tan^{ - }  \left | \dfrac{y}{x}\right |}

\displaystyle {:\implies  \alpha  =  \tan^{ - }  \left | -  \dfrac{ 24}{7}\right |}

\displaystyle {:\implies  \alpha  =  \tan^{ - }    \dfrac{ 24}{7}}

Since x is -ve and y is positive, the given complex number will lie in 2nd quadrant on argànd plane.

Angles of 2nd quadrant are given by, θ = π - α

\displaystyle {:\implies \theta =   \pi - \alpha }

\displaystyle {:\implies \theta =   \pi -  \tan^{ - }   \dfrac{ 24}{7}}

This is the required argument θ.

Similar questions