Math, asked by dharand7, 7 months ago

Find the modulus and principal argument of the complex number − √3 − i​

Answers

Answered by mathi98
20

Question:

Find the modulus and Principle argument of complex number   - \sqrt{ 3}  - i

Solution:

z =   - \sqrt{3}  - i \\  \\ z = ( -  \sqrt{3}  , - 1) \\  \\  |r|  =  \sqrt{ {x}^{2}  +  {y}^{2} }

|r| =  \sqrt{ ({ -  \sqrt{3} })^{2} +  (-1)^{2} } \\  \\  |r| = \sqrt{4}  \\  \\  |r|  = 2

To Find Argument:

 \alpha  =  \tan^{ - 1} | \frac{y}{x} |  \\  \\  \alpha  = \tan^{ - 1} | \frac{-1}{ -  \sqrt{3} } |  \\  \\ \alpha  =  \tan^{ - 1} | \frac{1}{ \sqrt{3} } | \\  \\  \alpha  =  \frac{\pi}{6}

z lies on the 3rd Quadrant( θ= \alpha - \pi )

θ =  \alpha  - \pi \\  \\  \frac{\pi}{6}  - \pi \\  \\ θ =  \frac{ - 5\pi}{6}  \\  \\  |r|  = 2  \:  \:  \: \: ; θ =  \frac{ - 5\pi}{6}

Hope it helps ya!!

Mark As Brainliest

Similar questions