Math, asked by tatsat41, 1 year ago

find the modulus of (1-i)^10​

Answers

Answered by iqra14tahreem
2

Answer:

hope you understand!!!!

Attachments:
Answered by Sharad001
30

Question :-

  \sf \: Find  \: the \:  modulus  \: of \:  {(1 -  \iota)}^{10}  \\

Answer :-

\mapsto \red{ \boxed{ \bf \: - 32  \: \iota \green{  \: or \:  - 32 \sqrt{ - 1} }}} \:  \\

Solution :-

We have ,

 \longmapsto \bf \:   {(1 -  \iota)}^{10}  \\

Split the power

 \mapsto \bf {  \{{(1 -  \iota)}^{2}  \}}^{5}  \\  \\    \:  \:  \:  \:  \:  \:  \:  \: \because  \orange{ \boxed{\sf {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy}} \\  \therefore \:  \\  \mapsto \bf \:  {(1 +  { \iota}^{2}  -  2 \iota) }^{5}  \\  \\   \because   \red{\boxed{\sf \:  \iota =  \sqrt{ - 1} }} \\  \\  \mapsto \bf \:  {(1 - 1  - 2 \iota)}^{5}  \\  \\  \mapsto \bf {( - 2 \iota)}^{5}  \\  \\  \because  \boxed{\bf \iota =  \sqrt{ - 1}  \: so \:  { \iota}^{4} = 1 } \\  \\  \mapsto \bf \:   {( - 2)}^{5}  { \iota}^{4}  \: . \iota \\  \\  \mapsto \red{ \boxed{ \bf \: - 32  \: \iota \green{  \: or \:  - 32 \sqrt{ - 1} }}}

Similar questions