Math, asked by hellsunny25, 3 days ago

Find the modulus of (1+i)(2+i)/(3+i)

Please Explain Step By Step ​

Answers

Answered by Manish72khushi088
0

Step-by-step explanation:

Factorial of 100 has 158 digits. It is not possible to store these many digits even if we use long long int. Following is a simple solution where we use an array to store individual digits of the result. The idea is to use basic mathematics for multiplication

Answered by IIIDAKSHIII
1

Solution:

\longmapsto\tt{z =\dfrac{(1 + 2i)}{(1 - 3i)}}

\longmapsto\tt{\dfrac{(1 + 2i)(1 +3i)}{(1 - 3i)(1 + 3i)}}

\longmapsto\tt{\dfrac{{1(1 + 3i)+2i(1 +3i)}}{ {1²-(3i)²} \: 5}}

\longmapsto\tt{\dfrac{ ( 1 +3i +2i + 6i²)}{(1 + 9)}}

\longmapsto\tt{\dfrac{(-5 + 5i)}{10}}

\longmapsto\tt{(\dfrac{-1}{2}) + (\dfrac{1}{2})i}

\sf\red{now, \:  modulus  \: of  \: the  \: complex  \: number \:  is}

\longmapsto\tt{l(\dfrac{-1}{2}) +( \dfrac{1}{2})il}

\longmapsto\tt{√{(\dfrac{-1}{2})^2 + (\dfrac{1}{2})^2}}

\longmapsto\tt{√{\dfrac{1}{4} + \dfrac{1}{4}}}

\longmapsto\tt{\dfrac{1}{√2}}

\sf\red{now, tan∅ = |Im(z)/Re(z)|}

\longmapsto\tt{|(\dfrac{1}{2})(\dfrac{-1}{2})| = 1}

\longmapsto\tt{tan∅ =\dfrac{tanπ}{4}}

\longmapsto\tt{∅ = \dfrac{π}{4}}

\sf\red{∅ \:  lies  \: on  \: 2nd  \: quadrant \:  so,}

\longmapsto\tt{arg(z) = π - ∅}

\longmapsto\tt{π -\dfrac{π}{4}}

\longmapsto\tt{\dfrac{3π}{4}}

___________________________

Similar questions