Math, asked by Anonymous, 6 days ago

Find the modulus of given complex number.

z =  \dfrac{(3 - 4i)( \sqrt{3}  - i)}{( \sqrt{3}  + i)^{7}  }

Answers

Answered by user0888
35

\Large{\boxed{\bold{[Topic:\ Complex\ numbers]}}}

The modulus of a complex number is given by -\large\text{$\cdots\longrightarrow\sqrt{a^{2}+b^{2}}=\sqrt{(a+bi)(a-bi)}=\sqrt{z\bar{z}}.$}

So, the modulus will be the following.

\large\text{$\cdots\longrightarrow z\bar{z}=\dfrac{(3-4i)(\sqrt{3}-i)}{(\sqrt{3}+i)^{7}}\times\dfrac{(3+4i)(\sqrt{3}+i)}{(\sqrt{3}-i)^{7}}$}

\large\text{$\cdots\longrightarrow z\bar{z}=\dfrac{(9+16)\times(3+1)}{(3+1)^{7}}$}

\large\text{$\cdots\longrightarrow z\bar{z}=\dfrac{5^{2}\times2^{2}}{2^{14}}$}

\large\text{$\cdots\longrightarrow z\bar{z}=\dfrac{5^{2}}{2^{12}}$}

\large\text{$\cdots\longrightarrow\boxed{\sqrt{z\bar{z}}=\dfrac{5}{64}}$}

Hence, the modulus of \large\text{$z$} is equal to \large\text{$\dfrac{5}{64}$}.

\Large{\boxed{\bold{[Learn\ more]}}}

\Large\text{$\rightarrow\text{Properties of complex numbers}$}

Let \large\text{$z$} represent a complex number.

\Large\text{$\bullet\text{ Complex conjugate}$}

\large\text{$\cdots\longrightarrow\boxed{z=\bar{z}\iff z\text{ is real.}}$}

\large\text{$\cdots\longrightarrow\boxed{z=-\bar{z}\iff z\text{ is purely imaginary.}}$}

\Large\text{$\bullet\text{ Real numbers}$}

\large\text{$\cdots\longrightarrow\boxed{z+\bar{z}\text{ is always real.}}$}

\large\text{$\cdots\longrightarrow\boxed{z\bar{z}\text{ is always real.}}$}

\Large\text{$\bullet\text{ Purely imaginary numbers}$}

\large\text{$\cdots\longrightarrow\boxed{z-\bar{z}\text{ is always purely imaginary.}}$}

Answered by mathdude500
34

\large\underline{\sf{Solution-}}

Given complex number is

\rm \: z \:  =  \: \dfrac{(3 - 4i)( \sqrt{3} - i)}{( \sqrt{3} + i)^{7} } \\

So,

\rm \:  |z|  \:  =  \: \bigg |\dfrac{(3 - 4i)( \sqrt{3} - i)}{( \sqrt{3} + i)^{7} }\bigg|  \\

We know,

\boxed{\sf{  \: \:  \: \bigg |\dfrac{z _1}{z _2} \bigg|  \:  = \:  \dfrac{ |z _1| }{ |z _2| }  \:  \:  \: }} \\

So, using this result, we get

\rm \:  |z|  = \dfrac{ |(3 - 4i)( \sqrt{3} - i)| }{ |\sqrt{3} + i)^{7}| } \\

We know, that

\boxed{\sf{  \: \:  \:  |z _1 \: z _2|  \:  =  \:  |z _1|  \:  |z _2|  \:  \: }} \\

and

\boxed{\sf{  \: \:  \:  | {z}^{n} |  \:  =  \:  { |z| }^{n}  \:  \:  \: }} \\

So, using these results, we get

\rm \:  |z |  = \dfrac{ |(3 - 4i) | \: | ( \sqrt{3} - i)| }{ |\sqrt{3} + i)| ^{7} }  \\

We know, that,

\boxed{\sf{  \: |x + iy|  \:  =  \:  \sqrt{ {x}^{2}  +  {y}^{2} }  \:  \: }} \\

So, using this result, we get

\rm \:  |z|  = \dfrac{ \sqrt{ {3}^{2}  +  {( - 4)}^{2} } \:  \:  \times  \:  \:  \sqrt{ {( \sqrt{3} )}^{2} +  {( - 1)}^{2}  }  }{ {\bigg( \sqrt{ {( \sqrt{3} )}^{2}  +  {(1)}^{2} } \bigg)}^{7} }  \\

\rm \:  |z|  = \dfrac{ \sqrt{ 9 + 16} \:  \:  \times  \:  \:  \sqrt{ 3 + 1  }  }{ {\bigg( \sqrt{ 3 + 1} \bigg)}^{7} }  \\

\rm \:  |z|  = \dfrac{ \sqrt{25} \:  \:  \times  \:  \:  \sqrt{4}  }{ {\bigg( \sqrt{4} \bigg)}^{7} }  \\

\rm \:  |z|  = \dfrac{ 5 \times 2 }{ {2}^{7} }  \\

\rm \:  |z|  = \dfrac{ 5 }{ {2}^{6} }  \\

\rm \:  |z|  = \dfrac{ 5 }{64 }  \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \:  |z| = \bigg |\dfrac{(3 - 4i)( \sqrt{3} - i)}{( \sqrt{3} + i)^{7} }\bigg|   = \dfrac{ 5 }{64 }   \: }}\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

Argument of complex number in different quadrants

\begin{gathered}\boxed{\begin{array}{c|c} \bf Complex \: number & \bf arg(z) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf x + iy & \sf  {tan}^{ - 1}\bigg |\dfrac{y}{x} \bigg|   \\ \\ \sf  - x + iy & \sf \pi - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf  - x - iy & \sf  - \pi + {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf x - iy & \sf  - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \end{array}} \\ \end{gathered}

Similar questions