Physics, asked by agarwalankit223, 1 year ago

Find the Moment of Inertia.

Attachments:

Answers

Answered by Arnav0404
0

Answer:

please see the attached picture

Attachments:
Answered by Anonymous
6

Answer:-

Option (2) is correct.

  \bf{\boxed{moment \: of \: inertia \: (I)  =  \frac{3}{4} m {r}^{2} }}

Formula used :-

 \small \:  \star \: moment \: of \: inertia \: (I) = m_1  { ( \: r_1\: )}^{2}  + m_2 { \:( r_2\:) }^{2}

Explanation:-

Position of centre of mass from A

 \implies \:  \frac{0 \times m + r \times 3m}{m + 3m}  \\  \\  \implies \:  \frac{3mr}{4m}  \\  \\   \bf{\rightarrow \: position \: of \: centre \: of \: mass \: from \: }\\  \:  \:  \:  \:  \:  \:  \bf{ A\:   =} \frac{3}{4} r \: \\ \\ \implies   m_1= m ,   m_2 = 3m

Now moment of inertia of the system of masses ,

 \implies \: I \:  = m \:   \times  {  \bigg(\frac{3}{4}r  \bigg)}^{2}  + 3m \:  \times  {  \bigg(\frac{1}{4} r \bigg)}^{2}  \\  \\  \implies \: I= m {r}^{2} \times  \frac{9}{16}  + m {r}^{2}  \times  \frac{3}{4}  \\  \\  \implies \: I \:  = m {r}^{2}  \bigg( \frac{9 + 3}{16}  \bigg) \\  \\  \implies \:   \boxed{I =  \frac{3}{4} m  {r}^{2} }

Option (2) is correct.

Attachments:
Similar questions