Math, asked by girijagouda75, 11 hours ago

find the multiplicative inverse of 1 - root 3i​

Answers

Answered by GraceS
50

\huge\mathbb{ANSWER:}

Given :

  • 1-√3i

To find :

  • Multiplicative inverse of 1-√3i

Solution :

  • As we know multiplicative inverse is reciprocal of number.

So, Multiplicative inverse of complex number 1-√3i is

 \rm \longmapsto \: mi(1 -  \sqrt{3}i) =  \frac{1}{1 -  \sqrt{3}i }  \\

  • Simplifying by rationalising denominator

 \rm \longmapsto \frac{1}{1 -  \sqrt{3}i }  \\

 \rm \longmapsto \frac{1}{1 -  \sqrt{3}i }  \times  \frac{1 -  \sqrt{3} i}{1 -  \sqrt{3} i}  \\

 \rm \longmapsto   \frac{1  +   \sqrt{3} i}{(1 -  \sqrt{3} i)(1 + \sqrt{3}i)  }  \\

  • IDENTITY USED :

 \red{ \bf \: (a + b)(a - b) =  {a}^{2}  -  {b}^{2} }

 \rm \longmapsto   \frac{1  +   \sqrt{3} i}{(1) {}^{2}  -  (\sqrt{3} i) {}^{2}   }  \\

 \rm \longmapsto   \frac{1  +   \sqrt{3} i}{(1)   -  (\sqrt{3}) {}^{2}  (i) {}^{2}   }  \\

  • i = iota = √-1

 \rm \longmapsto   \frac{1  +   \sqrt{3} i}{(1)   -  3  ( \sqrt{ - 1} ) {}^{2}   }  \\

\rm \longmapsto   \frac{1  +   \sqrt{3} i}{(1)   -  3  (  - 1 )   }  \\

\rm \longmapsto   \frac{1  +   \sqrt{3} i}{1    + 3   }  \\

\rm \longmapsto   \frac{1  +   \sqrt{3} i}{4   }  \\

  \longmapsto \boxed{\purple{  \bf\: mi(1 -  \sqrt{3}i) =     \frac{1  +   \sqrt{3} i}{4   } }} \\

Answered by Aʙʜɪɪ69
0

Step-by-step explanation:

69 is the right answer....

Similar questions