Math, asked by Anonymous, 1 year ago

Find The Multiplicative Inverse of 2 - 3i​

Answers

Answered by Anonymous
109

Answer:

Multiplicative inverse of 2 - 3i is 1/2-3i:

\implies  \frac{1}{2 - 3i}  \times  \frac{2  + 3i}{2  + 3i}

\implies  \frac{2 + 3i}{(2)^{2} -  {(3i)}^{2}  }

\implies  \frac{2 + 3i}{13}

\implies  \frac{2}{13}  +  \frac{3}{13} i

Answered by BoyBrainly
45

 \bold{ \large{Let \:  , \:  Z = 2 - 3i \:}}

  \fbox{ \bold{\large{Conjugate  \: Of  \: Z  :  }}}  \\   \\  \bold{\large{Conjugate  \: Of  \: Z \:  = 2 + 3i}}

   \fbox{\bold{\large{ \: Modulus \: Of \: Z  \:  :  \: \sqrt{ {a}^{2} +  {b}^{2} }  }}} \\  \\   \bold{\large{Modulus \: Of \: Z  \: = \sqrt{ {(2)}^{2}  +  {( - 3)}^{2} }  =   \sqrt{4  + 9} =  \sqrt{13}  }} \\  \\

  \fbox{\bold{ \huge{ \:Solution \:  }}}

 \fbox{  \bold{\large{multiplicative \: inverse \: of \: complex \: number =  \frac{conjugate \: of \: complex \: number}{square \: of \: modulus \: of \: complex \: number} }}} \\  \\   \bold{\large{multiplicative \: inverse \: of  \: z \: = ( \frac{2 + 3i}{ { ( \: \sqrt{13} \: ) }^{2} } ) }} \\  \\   \bold{\large{multiplicative \: inverse \: of  \: z \:  =  \frac{2 + 3i}{13} }} \\  \\ \bold{ \large{multiplicative \: inverse \: of  \: z \:   =  \frac{2}{13}  +  \frac{3i}{13} }}

Similar questions