Math, asked by kush4026, 1 year ago

Find the multiplicative
inverse of 3+4i

Answers

Answered by MaheswariS
5

\underline{\textbf{Given:}}

\mathsf{3+4\,i}

\underline{\textbf{To find:}}

\textsf{The multiplicative inverse of}\mathsf{\;3+4\,i}

\underline{\textbf{Solution:}}

\underline{\textbf{Concept used:}}

\textsf{The multiplicative inverse of a}

\textsf{complex number z is}\;\mathsf{\dfrac{1}{z}}

\mathsf{Multiplicative\;inverse\;of\;3+4\,i}

\mathsf{=\dfrac{1}{3+4\,i}}

\mathsf{=\dfrac{1}{3+4\,i}{\times}\dfrac{3-4\,i}{3-4\,i}}

\textsf{using the identity,}\;\boxed{\mathsf{(a-b)(a+b)=a^2-b^2}}

\mathsf{=\dfrac{3-4\,i}{3^2-(4\,i)^2}}

\mathsf{=\dfrac{3-4\,i}{9-16(-1)}}

\mathsf{=\dfrac{3-4\,i}{9+16}}

\mathsf{=\dfrac{3-4\,i}{25}}

\therefore\textbf{Inverse of}\;\mathsf{3+4\,i}\;\textbf{is}\;\mathsf{\dfrac{1}{25}(3-4\,i)}

Similar questions