Math, asked by 9005012040, 1 year ago

Find the multiplicative inverse of √5+3i.

Answers

Answered by dpk0401
81

multiplivtive \: inverse \: of \sqrt{5}  + 3i = \frac{1}{ \sqrt{5}  + 3i}
 \frac{1}{ \sqrt{5 } + 3i }   \times  \frac{ \sqrt{5} - 3i }{ \sqrt{5}  -3i}
 =   \frac{ \sqrt{5} - 3i }{5 + 9}
 =  \frac{ \sqrt{5}  - 3i}{14}

It is the Multiplicative inverse of Root 5 - 3i
Hope it Helps
pls Mark As brainliest
Answered by pinquancaro
47

Answer:

The multiplicative inverse of the function is \frac{\sqrt5}{14}-\frac{3i}{14}

Step-by-step explanation:        

Given : Expression \sqrt5+3i

To find : The multiplicative inverse of expression ?

Solution :

Multiplicative inverse of z=z^{-1}=\frac{1}{z}

Let  z=\sqrt5+3i

Multiplicative inverse of z=\sqrt5+3i is given by \frac{1}{z}=\frac{1}{\sqrt5+3i}

Rationalize the expression,

\frac{1}{z}=\frac{1}{\sqrt5+3i}\times \frac{\sqrt5+3i}{\sqrt5+3i}

\frac{1}{z}=\frac{\sqrt5-3i}{(\sqrt5-3i)(\sqrt5+3i)}

\frac{1}{z}=\frac{\sqrt5-3i}{(\sqrt5)^2-(3i)^2}

\frac{1}{z}=\frac{\sqrt5-3i}{5+9}

\frac{1}{z}=\frac{\sqrt5-3i}{14}

\frac{1}{z}=\frac{\sqrt5}{14}-\frac{3i}{14}

Therefore, The multiplicative inverse of the function is \frac{\sqrt5}{14}-\frac{3i}{14}

Similar questions